These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 1611875)
1. Reversed-phase ion-paired HPLC of purine nucleotides from skeletal muscle, heart and brain of the goldfish, Carassius auratus L.--II. Influence of environmental anoxia on metabolite levels. Van der Boon J; de Jong RL; Van den Thillart GE; Addink AD Comp Biochem Physiol B; 1992 Apr; 101(4):583-6. PubMed ID: 1611875 [TBL] [Abstract][Full Text] [Related]
2. Reversed-phase ion-paired HPLC of purine nucleotides from skeletal muscle, heart and brain of the goldfish, Carassius auratus L.--I. Development of the analytical method. Van der Boon J; de Jong RL; Van den Thillart GE; Addink AD Comp Biochem Physiol B; 1992 Apr; 101(4):577-81. PubMed ID: 1611874 [TBL] [Abstract][Full Text] [Related]
3. Purine nucleotides and AMP deamination during maximal and endurance swimming exercise in heart and skeletal muscle of rats. Weicker H; Hageloch W; Luo J; Müller D; Werle E; Sehling KM Int J Sports Med; 1990 May; 11 Suppl 2():S68-77. PubMed ID: 2361782 [TBL] [Abstract][Full Text] [Related]
4. Goldfish muscle energy metabolism during electrical stimulation. van Waarde A; Kesbeke F Comp Biochem Physiol B; 1983; 75(4):635-9. PubMed ID: 6617158 [TBL] [Abstract][Full Text] [Related]
5. Characterization of purine nucleotide metabolism in primary rat cardiomyocyte cultures. Zoref-Shani E; Kessler-Icekson G; Wasserman L; Sperling O Biochim Biophys Acta; 1984 Jun; 804(2):161-8. PubMed ID: 6326848 [TBL] [Abstract][Full Text] [Related]
6. Analysis of purine nucleotides in muscle tissue by HPLC. Idström JP; Soussi B; Wanag E; Bylund-Fellenius AC Scand J Clin Lab Invest; 1990 Sep; 50(5):541-9. PubMed ID: 2237266 [TBL] [Abstract][Full Text] [Related]
7. Rapid determination of creatine, phosphocreatine, purine bases and nucleotides (ATP, ADP, AMP, GTP, GDP) in heart biopsies by gradient ion-pair reversed-phase liquid chromatography. Ally A; Park G J Chromatogr; 1992 Mar; 575(1):19-27. PubMed ID: 1517298 [TBL] [Abstract][Full Text] [Related]
8. Myoadenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle. Sabina RL; Swain JL; Olanow CW; Bradley WG; Fishbein WN; DiMauro S; Holmes EW J Clin Invest; 1984 Mar; 73(3):720-30. PubMed ID: 6707201 [TBL] [Abstract][Full Text] [Related]
9. Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle. Sahlin K; Gorski J; Edström L Am J Physiol; 1990 Sep; 259(3 Pt 1):C409-12. PubMed ID: 2399963 [TBL] [Abstract][Full Text] [Related]
10. Evidence of anoxia-induced channel arrest in the brain of the goldfish (Carassius auratus). Wilkie MP; Pamenter ME; Alkabie S; Carapic D; Shin DS; Buck LT Comp Biochem Physiol C Toxicol Pharmacol; 2008 Nov; 148(4):355-62. PubMed ID: 18620076 [TBL] [Abstract][Full Text] [Related]
11. AMP-activated protein kinase activity during metabolic rate depression in the hypoxic goldfish, Carassius auratus. Jibb LA; Richards JG J Exp Biol; 2008 Oct; 211(Pt 19):3111-22. PubMed ID: 18805810 [TBL] [Abstract][Full Text] [Related]
12. The metabolism of purine and pyrimidine nucleotides in rat cortex during insulin-induced hypoglycemia and recovery. Chapman AG; Westerberg E; Siesjö BK J Neurochem; 1981 Jan; 36(1):179-89. PubMed ID: 7463044 [TBL] [Abstract][Full Text] [Related]
13. Characterization of purine nucleotide metabolism in primary rat muscle cultures. Zoref-Shani E; Shainberg A; Sperling O Biochim Biophys Acta; 1982 Jun; 716(3):324-30. PubMed ID: 6180773 [TBL] [Abstract][Full Text] [Related]
14. Organ-specific control of glycolysis in anoxic turtles. Kelly DA; Storey KB Am J Physiol; 1988 Nov; 255(5 Pt 2):R774-9. PubMed ID: 2973250 [TBL] [Abstract][Full Text] [Related]
15. AMP-deaminase from goldfish white muscle: regulatory properties and redistribution under exposure to high environmental oxygen level. Lushchak VI; Husak VV; Storey JM; Storey KB Fish Physiol Biochem; 2009 Aug; 35(3):443-52. PubMed ID: 18931932 [TBL] [Abstract][Full Text] [Related]
16. Control of the purine nucleotide cycle in extracts of rat skeletal muscle: effects of energy state and concentrations of cycle intermediates. Manfredi JP; Holmes EW Arch Biochem Biophys; 1984 Sep; 233(2):515-29. PubMed ID: 6486798 [TBL] [Abstract][Full Text] [Related]
17. Prostaglandin synthesis in goldfish heart, Carassius auratus. Herman CA; Zimmerman PR; Doolittle KD Gen Comp Endocrinol; 1984 Jun; 54(3):478-85. PubMed ID: 6735165 [TBL] [Abstract][Full Text] [Related]
18. Production and degradation of AMP in cultured rat skeletal and heart muscle: a comparative study. Zoref-Shani E; Shainberg A; Kessler-Icekson G; Sperling O Adv Exp Med Biol; 1986; 195 Pt B():485-91. PubMed ID: 3020922 [No Abstract] [Full Text] [Related]
19. Reversed-phase liquid chromatographic analysis of o-phthaldialdehyde-derivatized free amino-acids in two types of goldfish muscles. van der Boon J; van den Thillart GE; Addink AD J Pharm Biomed Anal; 1989; 7(4):471-81. PubMed ID: 2490753 [TBL] [Abstract][Full Text] [Related]
20. Purine nucleotide levels in host tissues of Ehrlich ascites tumor-bearing mice in different growth phases of the tumor. Siems WG; Grune T; Schmidt H; Tikhonov YV; Pimenov AM Cancer Res; 1993 Nov; 53(21):5143-7. PubMed ID: 8221650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]