BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 1611875)

  • 1. Reversed-phase ion-paired HPLC of purine nucleotides from skeletal muscle, heart and brain of the goldfish, Carassius auratus L.--II. Influence of environmental anoxia on metabolite levels.
    Van der Boon J; de Jong RL; Van den Thillart GE; Addink AD
    Comp Biochem Physiol B; 1992 Apr; 101(4):583-6. PubMed ID: 1611875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversed-phase ion-paired HPLC of purine nucleotides from skeletal muscle, heart and brain of the goldfish, Carassius auratus L.--I. Development of the analytical method.
    Van der Boon J; de Jong RL; Van den Thillart GE; Addink AD
    Comp Biochem Physiol B; 1992 Apr; 101(4):577-81. PubMed ID: 1611874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purine nucleotides and AMP deamination during maximal and endurance swimming exercise in heart and skeletal muscle of rats.
    Weicker H; Hageloch W; Luo J; Müller D; Werle E; Sehling KM
    Int J Sports Med; 1990 May; 11 Suppl 2():S68-77. PubMed ID: 2361782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Goldfish muscle energy metabolism during electrical stimulation.
    van Waarde A; Kesbeke F
    Comp Biochem Physiol B; 1983; 75(4):635-9. PubMed ID: 6617158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of purine nucleotide metabolism in primary rat cardiomyocyte cultures.
    Zoref-Shani E; Kessler-Icekson G; Wasserman L; Sperling O
    Biochim Biophys Acta; 1984 Jun; 804(2):161-8. PubMed ID: 6326848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of purine nucleotides in muscle tissue by HPLC.
    Idström JP; Soussi B; Wanag E; Bylund-Fellenius AC
    Scand J Clin Lab Invest; 1990 Sep; 50(5):541-9. PubMed ID: 2237266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid determination of creatine, phosphocreatine, purine bases and nucleotides (ATP, ADP, AMP, GTP, GDP) in heart biopsies by gradient ion-pair reversed-phase liquid chromatography.
    Ally A; Park G
    J Chromatogr; 1992 Mar; 575(1):19-27. PubMed ID: 1517298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myoadenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle.
    Sabina RL; Swain JL; Olanow CW; Bradley WG; Fishbein WN; DiMauro S; Holmes EW
    J Clin Invest; 1984 Mar; 73(3):720-30. PubMed ID: 6707201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle.
    Sahlin K; Gorski J; Edström L
    Am J Physiol; 1990 Sep; 259(3 Pt 1):C409-12. PubMed ID: 2399963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of anoxia-induced channel arrest in the brain of the goldfish (Carassius auratus).
    Wilkie MP; Pamenter ME; Alkabie S; Carapic D; Shin DS; Buck LT
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Nov; 148(4):355-62. PubMed ID: 18620076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMP-activated protein kinase activity during metabolic rate depression in the hypoxic goldfish, Carassius auratus.
    Jibb LA; Richards JG
    J Exp Biol; 2008 Oct; 211(Pt 19):3111-22. PubMed ID: 18805810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The metabolism of purine and pyrimidine nucleotides in rat cortex during insulin-induced hypoglycemia and recovery.
    Chapman AG; Westerberg E; Siesjö BK
    J Neurochem; 1981 Jan; 36(1):179-89. PubMed ID: 7463044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of purine nucleotide metabolism in primary rat muscle cultures.
    Zoref-Shani E; Shainberg A; Sperling O
    Biochim Biophys Acta; 1982 Jun; 716(3):324-30. PubMed ID: 6180773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organ-specific control of glycolysis in anoxic turtles.
    Kelly DA; Storey KB
    Am J Physiol; 1988 Nov; 255(5 Pt 2):R774-9. PubMed ID: 2973250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AMP-deaminase from goldfish white muscle: regulatory properties and redistribution under exposure to high environmental oxygen level.
    Lushchak VI; Husak VV; Storey JM; Storey KB
    Fish Physiol Biochem; 2009 Aug; 35(3):443-52. PubMed ID: 18931932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of the purine nucleotide cycle in extracts of rat skeletal muscle: effects of energy state and concentrations of cycle intermediates.
    Manfredi JP; Holmes EW
    Arch Biochem Biophys; 1984 Sep; 233(2):515-29. PubMed ID: 6486798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prostaglandin synthesis in goldfish heart, Carassius auratus.
    Herman CA; Zimmerman PR; Doolittle KD
    Gen Comp Endocrinol; 1984 Jun; 54(3):478-85. PubMed ID: 6735165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production and degradation of AMP in cultured rat skeletal and heart muscle: a comparative study.
    Zoref-Shani E; Shainberg A; Kessler-Icekson G; Sperling O
    Adv Exp Med Biol; 1986; 195 Pt B():485-91. PubMed ID: 3020922
    [No Abstract]   [Full Text] [Related]  

  • 19. Reversed-phase liquid chromatographic analysis of o-phthaldialdehyde-derivatized free amino-acids in two types of goldfish muscles.
    van der Boon J; van den Thillart GE; Addink AD
    J Pharm Biomed Anal; 1989; 7(4):471-81. PubMed ID: 2490753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purine nucleotide levels in host tissues of Ehrlich ascites tumor-bearing mice in different growth phases of the tumor.
    Siems WG; Grune T; Schmidt H; Tikhonov YV; Pimenov AM
    Cancer Res; 1993 Nov; 53(21):5143-7. PubMed ID: 8221650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.