BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 1611875)

  • 21. Purine metabolism of human glioblastoma in vivo.
    Pillwein K; Chiba P; Knoflach A; Czermak B; Schuchter K; Gersdorf E; Ausserer B; Murr C; Goebl R; Stockhammer G
    Cancer Res; 1990 Mar; 50(5):1576-9. PubMed ID: 2154328
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Systematic variations in the content of the purine nucleotides in the steady-state perfused rat heart. Evidence for the existence of controlled storage and release of adenine nucleotides.
    Bates DJ; Perrett D; Mowbray J
    Biochem J; 1978 Nov; 176(2):485-93. PubMed ID: 743254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of purine ribonucleotides and deoxyribonucleotides in cell extracts by high-performance liquid chromatography.
    Cohen MB; Maybaum J; Sadée W
    J Chromatogr; 1980 Oct; 198(4):435-41. PubMed ID: 7440680
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compartmentalization of non-adenine nucleotides in anoxic cardiac myocytes.
    Geisbuhler TP
    Basic Res Cardiol; 2008 Jan; 103(1):31-40. PubMed ID: 17891521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. N-acetylhistidine metabolism in the brain, heart and lens of the goldfish, Carassius auratus, in vivo: evidence of rapid turnover and a possible intermediate.
    Baslow MH; Turlapaty P; Lenney JF
    Life Sci; 1969 May; 8(10):535-41. PubMed ID: 5793512
    [No Abstract]   [Full Text] [Related]  

  • 26. Application of simultaneous UV-radioactivity high-performance liquid chromatography to the study of intermediary metabolism. I. Purine nucleotides, nucleosides and bases.
    Webster HK; Whaun JM
    J Chromatogr; 1981 May; 209(2):283-92. PubMed ID: 7251721
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Is the purine nucleotide cycle important in heart muscle?
    Taegtmeyer H
    Adv Myocardiol; 1985; 6():165-72. PubMed ID: 3992036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extraction and assay of creatine phosphate, purine, and pyridine nucleotides in cardiac tissue by reversed-phase high-performance liquid chromatography.
    Bernocchi P; Ceconi C; Cargnoni A; Pedersini P; Curello S; Ferrari R
    Anal Biochem; 1994 Nov; 222(2):374-9. PubMed ID: 7864361
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The purine nucleotide cycle in skeletal muscle.
    Lowenstein JM; Goodman MN
    Fed Proc; 1978 Jul; 37(9):2308-12. PubMed ID: 658470
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The relationship between NMDA receptor function and the high ammonia tolerance of anoxia-tolerant goldfish.
    Wilkie MP; Pamenter ME; Duquette S; Dhiyebi H; Sangha N; Skelton G; Smith MD; Buck LT
    J Exp Biol; 2011 Dec; 214(Pt 24):4107-20. PubMed ID: 22116753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes of nucleotide content in human and rat heart during cardiac surgery and ischemia.
    Smoleński RT; Składanowski AC; Swierczyński J; Perko M; Narkiewicz M; Zydowo MM
    Acta Biochim Pol; 1993; 40(4):531-8. PubMed ID: 8140827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reversible brain swelling in crucian carp (Carassius carassius) and goldfish (Carassius auratus) in response to high external ammonia and anoxia.
    Wilkie MP; Stecyk JA; Couturier CS; Sidhu S; Sandvik GK; Nilsson GE
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jun; 184():65-75. PubMed ID: 25582543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stellate and pyramidal neurons in goldfish telencephalon respond differently to anoxia and GABA receptor inhibition.
    Hossein-Javaheri N; Wilkie MP; Lado WE; Buck LT
    J Exp Biol; 2017 Feb; 220(Pt 4):695-704. PubMed ID: 27923876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of non-cytosolic hexokinase activity in white skeletal muscle from goldfish (Carassius auratus L.) and the effect of cold acclimation.
    dos Santos RS; Diniz LP; Galina A; da-Silva WS
    Biosci Rep; 2010 Dec; 30(6):413-23. PubMed ID: 20055755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liquid chromatographic demonstration of catecholamine release in fish heart.
    Cameron JS; O'Connor EF
    J Exp Zool; 1979 Sep; 209(3):473-9. PubMed ID: 490140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interrelation between salvage of purine nucleotides and protein synthesis in rat heart cells.
    Ravid K; Diamant P; Avi-Dor Y
    Arch Biochem Biophys; 1985 Jan; 236(1):159-66. PubMed ID: 3966790
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulation of the purine nucleotide cycle as an anaplerotic process in skeletal muscle.
    Canela EI; Ginesta I; Franco R
    Arch Biochem Biophys; 1987 Apr; 254(1):142-55. PubMed ID: 3579294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytochrome c oxidase and purine nucleotides in skeletal muscle in tumour-bearing exercising rats.
    Daneryd P; Karlberg I; Scherstén T; Soussi B
    Eur J Cancer; 1992; 28A(4-5):773-7. PubMed ID: 1326306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrogen peroxide-induced oxidative stress to the mammalian heart-muscle cell (cardiomyocyte): nonperoxidative purine and pyrimidine nucleotide depletion.
    Janero DR; Hreniuk D; Sharif HM
    J Cell Physiol; 1993 Jun; 155(3):494-504. PubMed ID: 8491789
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The oxygen consumption of some tissues from hypophysectomized goldfish, Carassius auratus L.
    Johansen PH; Marion G
    Experientia; 1977 Sep; 33(9):1163. PubMed ID: 891861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.