BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 16118978)

  • 1. Bubble-based acoustic radiation force elasticity imaging.
    Erpelding TN; Hollman KW; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jun; 52(6):971-9. PubMed ID: 16118978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping age-related elasticity changes in porcine lenses using bubble-based acoustic radiation force.
    Erpelding TN; Hollman KW; O'Donnell M
    Exp Eye Res; 2007 Feb; 84(2):332-41. PubMed ID: 17141220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bubble-based acoustic radiation force using chirp insonation to reduce standing wave effects.
    Erpelding TN; Hollman KW; O'Donnell M
    Ultrasound Med Biol; 2007 Feb; 33(2):263-9. PubMed ID: 17306697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation.
    Palmeri ML; McAleavey SA; Fong KL; Trahey GE; Nightingale KR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Nov; 53(11):2065-79. PubMed ID: 17091842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion of a solid sphere in a viscoelastic medium in response to applied acoustic radiation force: Theoretical analysis and experimental verification.
    Aglyamov SR; Karpiouk AB; Ilinskii YA; Zabolotskaya EA; Emelianov SY
    J Acoust Soc Am; 2007 Oct; 122(4):1927-36. PubMed ID: 17902829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro assessment of stiffness-dependent histotripsy bubble cloud activity in gel phantoms and blood clots.
    Hendley SA; Bollen V; Anthony GJ; Paul JD; Bader KB
    Phys Med Biol; 2019 Jul; 64(14):145019. PubMed ID: 31146275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method for microbubble characterization using primary radiation force.
    Vos HJ; Guidi F; Boni E; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jul; 54(7):1333-45. PubMed ID: 17718322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of novel imaging probe for optical/acoustic radiation imaging (OARI).
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2013 Nov; 40(11):111910. PubMed ID: 24320443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of mechanical properties of a viscoelastic medium using a laser-induced microbubble interrogated by an acoustic radiation force.
    Yoon S; Aglyamov SR; Karpiouk AB; Kim S; Emelianov SY
    J Acoust Soc Am; 2011 Oct; 130(4):2241-8. PubMed ID: 21973379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping elasticity in human lenses using bubble-based acoustic radiation force.
    Hollman KW; O'Donnell M; Erpelding TN
    Exp Eye Res; 2007 Dec; 85(6):890-3. PubMed ID: 17967452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical observations of acoustical radiation force effects on individual air bubbles.
    Palanchon P; Tortoli P; Bouakaz A; Versluis M; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):104-10. PubMed ID: 15742566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas bubble and solid sphere motion in elastic media in response to acoustic radiation force.
    Ilinskii YA; Meegan GD; Zabolotskaya EA; Emelianov SY
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):2338-46. PubMed ID: 15898674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.
    Kang ST; Huang YL; Yeh CK
    Ultrasound Med Biol; 2014 Mar; 40(3):551-61. PubMed ID: 24433748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intense acoustic bursts as a signal-enhancement mechanism in ultrasound-modulated optical tomography.
    Kim C; Zemp RJ; Wang LV
    Opt Lett; 2006 Aug; 31(16):2423-5. PubMed ID: 16880843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitored steady-state excitation and recovery (MSSER) radiation force imaging using viscoelastic models.
    Mauldin FW; Haider MA; Loboa EG; Behler RH; Euliss LE; Pfeiler TW; Gallippi CM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1597-610. PubMed ID: 18986950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-dimensional model of an ultrasound contrast agent gas bubble and its mechanical effects on microvessels.
    Hosseinkhah N; Hynynen K
    Phys Med Biol; 2012 Feb; 57(3):785-808. PubMed ID: 22252221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of an Elasticity Map in the Human Cornea.
    Mikula ER; Jester JV; Juhasz T
    Invest Ophthalmol Vis Sci; 2016 Jun; 57(7):3282-6. PubMed ID: 27327584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2010 Apr; 37(4):1440-8. PubMed ID: 20443465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic estimation of thermal distribution in the vicinity of femtosecond laser-induced optical breakdown.
    Zohdy MJ; Tse C; Ye JY; O'Donnell M
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2347-55. PubMed ID: 17073341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic property measurement in thin tissue constructs using ultrasound.
    Liu D; Ebbini ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):368-83. PubMed ID: 18334343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.