BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

888 related articles for article (PubMed ID: 16119007)

  • 1. Antitumor polycyclic acridines. Part 16. Triplex DNA as a target for DNA-binding polycyclic acridine derivatives.
    Missailidis S; Modi C; Trapani V; Laughton CA; Stevens MF
    Oncol Res; 2005; 15(2):95-105. PubMed ID: 16119007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetics of strand-displacement reactions in triple helices: a spectroscopic study.
    Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL
    J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antitumor polycyclic acridines. Part 12. Physical and biological properties of 8,13-diethyl-6-methylquino[4,3,2-kl]acridinium iodide: a lead compound in anticancer drug design.
    Missailidis S; Stanslas J; Modi C; Ellis MJ; Robins RA; Laughton CA; Stevens MF
    Oncol Res; 2002; 13(3):175-89. PubMed ID: 12549627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrimidine-purine-pyrimidine triplex DNA stabilization in the presence of tetramine and pentamine analogues of spermine.
    Thomas TJ; Ashley C; Thomas T; Shirahata A; Sigal LH; Lee JS
    Biochem Cell Biol; 1997; 75(3):207-15. PubMed ID: 9404640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic studies on the formation and thermal stability of DNA triplexes with a benzoannulated delta-carboline-oligonucleotide conjugate.
    Eick A; Xiao Z; Langer P; Weisz K
    Bioorg Med Chem; 2008 Oct; 16(20):9106-12. PubMed ID: 18823783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presence of divalent cation is not mandatory for the formation of intramolecular purine-motif triplex containing human c-jun protooncogene target.
    Kaushik S; Kaushik M; Svinarchuk F; Malvy C; Fermandjian S; Kukreti S
    Biochemistry; 2011 May; 50(19):4132-42. PubMed ID: 21381700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triple helix formation and homologous strand exchange in pyrene-labeled oligonucleotides.
    Mohammadi S; Slama-Schwok A; Léger G; el Manouni D; Shchyolkina A; Leroux Y; Taillandier E
    Biochemistry; 1997 Dec; 36(48):14836-44. PubMed ID: 9398205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly stable DNA triplexes formed with cationic phosphoramidate pyrimidine alpha-oligonucleotides.
    Michel T; Debart F; Heitz F; Vasseur JJ
    Chembiochem; 2005 Jul; 6(7):1254-62. PubMed ID: 15912553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternate-strand triplex formation: modulation of binding to matched and mismatched duplexes by sequence choice in the Pu-Pu-Py block.
    Balatskaya SV; Belotserkovskii BP; Johnston BH
    Biochemistry; 1996 Oct; 35(41):13328-37. PubMed ID: 8873599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of spermine conjugation on the interaction of acridine with alternating purine-pyrimidine oligodeoxyribonucleotides studied by CD, fluorescence and absorption spectroscopies.
    Pérez-Flores L; Ruiz-Chica AJ; Delcros JG; Sánchez-Jiménez FM; Ramírez FJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Apr; 69(4):1089-96. PubMed ID: 17644401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of purine motif DNA triplex by a tetrapeptide from the binding domain of HMGBI protein.
    Jain A; Akanchha S; Rajeswari MR
    Biochimie; 2005 Aug; 87(8):781-90. PubMed ID: 15885869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benzoquinazoline derivatives as substitutes for thymine in nucleic acid complexes. Use of fluorescence emission of benzo[g]quinazoline-2,4-(1H,3H)-dione in probing duplex and triplex formation.
    Godde F; Toulmé JJ; Moreau S
    Biochemistry; 1998 Sep; 37(39):13765-75. PubMed ID: 9753465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single stand targeted triplex formation: physicochemical and biochemical properties of foldback triplexes.
    Kandimalla ER; Manning A; Agrawal S
    J Biomol Struct Dyn; 1996 Aug; 14(1):79-90. PubMed ID: 8877564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a triplex DNA-binding protein from human cells.
    Guieysse AL; Praseuth D; Hélène C
    J Mol Biol; 1997 Mar; 267(2):289-98. PubMed ID: 9096226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triplex formation by pyrene-labelled probes for nucleic acid detection in fluorescence assays.
    Van Daele I; Bomholt N; Filichev VV; Van Calenbergh S; Pedersen EB
    Chembiochem; 2008 Mar; 9(5):791-801. PubMed ID: 18327861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-dependent effects of minor groove binders on the DNA triple helix motif poly(dA).2poly(dT): influence of antitumoractive nonintercalative bisquaternary ammonium heterocycles.
    Förtsch I; Baguley B; Zimmer C
    Anticancer Drug Des; 1998 Jul; 13(5):417-29. PubMed ID: 9702208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of chain length modification and bis(ethyl) substitution of spermine analogs on purine-purine-pyrimidine triplex DNA stabilization, aggregation, and conformational transitions.
    Musso M; Thomas T; Shirahata A; Sigal LH; Van Dyke MW; Thomas TJ
    Biochemistry; 1997 Feb; 36(6):1441-9. PubMed ID: 9063892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distamycin A complexation with a nucleic acid triple helix.
    Durand M; Maurizot JC
    Biochemistry; 1996 Jul; 35(28):9133-9. PubMed ID: 8703918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physicochemical studies of the d(G3T4G3)*d(G3A4G3).d(C3T4C3) triple helix.
    Scaria PV; Will S; Levenson C; Shafer RH
    J Biol Chem; 1995 Mar; 270(13):7295-303. PubMed ID: 7706270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.