BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

889 related articles for article (PubMed ID: 16119007)

  • 21. Design of triple helix forming C-glycoside molecules.
    Li JS; Fan YH; Zhang Y; Marky LA; Gold B
    J Am Chem Soc; 2003 Feb; 125(8):2084-93. PubMed ID: 12590536
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Specific inhibition of in vitro transcription elongation by triplex-forming oligonucleotide-intercalator conjugates targeted to HIV proviral DNA.
    Giovannangeli C; Perrouault L; Escudé C; Nguyen T; Hélène C
    Biochemistry; 1996 Aug; 35(32):10539-48. PubMed ID: 8756710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of triple helix formation by polypurine versus polypyrimidine oligodeoxynucleotides when conjugated to a DNA intercalator.
    Orson FM; Klysik J; Glass GA; Kinsey BM
    J Exp Ther Oncol; 1996 May; 1(3):177-85. PubMed ID: 9414402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Stabilization of DNA triple helix using conjugates of oligonucleotides and synthetic ligands].
    Siniakov AN; Riabinin VA; Grimm GN; Butorin AS
    Mol Biol (Mosk); 2001; 35(2):298-308. PubMed ID: 11357412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermodynamic, kinetic, and conformational properties of a parallel intermolecular DNA triplex containing 5' and 3' junctions.
    Asensio JL; Dosanjh HS; Jenkins TC; Lane AN
    Biochemistry; 1998 Oct; 37(43):15188-98. PubMed ID: 9790683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recognition of hairpin-containing single-stranded DNA by oligonucleotides containing internal acridine derivatives.
    François JC; Hélène C
    Bioconjug Chem; 1999; 10(3):439-46. PubMed ID: 10346876
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Triplex and quadruplex DNA structures studied by electrospray mass spectrometry.
    Rosu F; Gabelica V; Houssier C; Colson P; Pauw ED
    Rapid Commun Mass Spectrom; 2002; 16(18):1729-36. PubMed ID: 12207360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energetics of a stable intramolecular DNA triple helix formation.
    Völker J; Botes DP; Lindsey GG; Klump HH
    J Mol Biol; 1993 Apr; 230(4):1278-90. PubMed ID: 8487304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Triple helix formation by (G,A)-containing oligonucleotides: asymmetric sequence effect.
    Arimondo PB; Barcelo F; Sun JS; Maurizot JC; Garestier T; Hélène C
    Biochemistry; 1998 Nov; 37(47):16627-35. PubMed ID: 9843430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Applications of triple-stranded nucleic acid structures to DNA purification, detection and analysis.
    Potaman VN
    Expert Rev Mol Diagn; 2003 Jul; 3(4):481-96. PubMed ID: 12877387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intra- and intermolecular triplex DNA formation in the murine c-myb proto-oncogene promoter are inhibited by mithramycin.
    Vigneswaran N; Thayaparan J; Knops J; Trent J; Potaman V; Miller DM; Zacharias W
    Biol Chem; 2001 Feb; 382(2):329-42. PubMed ID: 11308031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Triplex formation on DNA targets: how to choose the oligonucleotide.
    Vekhoff P; Ceccaldi A; Polverari D; Pylouster J; Pisano C; Arimondo PB
    Biochemistry; 2008 Nov; 47(47):12277-89. PubMed ID: 18954091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamic and kinetic effects of morpholino modification on pyrimidine motif triplex nucleic acid formation under physiological condition.
    Torigoe H; Sasaki K; Katayama T
    J Biochem; 2009 Aug; 146(2):173-83. PubMed ID: 19351708
    [TBL] [Abstract][Full Text] [Related]  

  • 34. "Parallel" and "antiparallel tail-clamps" increase the efficiency of triplex formation with structured DNA and RNA targets.
    Nadal A; Eritja R; Esteve T; Pla M
    Chembiochem; 2005 Jun; 6(6):1034-42. PubMed ID: 15880676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The anti-gene strategy: control of gene expression by triplex-forming-oligonucleotides.
    Hélène C
    Anticancer Drug Des; 1991 Dec; 6(6):569-84. PubMed ID: 1772570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNA-ligand interactions: affinity and specificity of aminoglycoside dimers and acridine conjugates to the HIV-1 Rev response element.
    Luedtke NW; Liu Q; Tor Y
    Biochemistry; 2003 Oct; 42(39):11391-403. PubMed ID: 14516190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antitumour polycyclic acridines. Part 2. Physicochemical studies on the interactions between DNA and novel polycyclic acridine derivatives.
    Giménez-Arnau E; Missailidis S; Stevens MF
    Anticancer Drug Des; 1998 Mar; 13(2):125-43. PubMed ID: 9524555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Different effects of nonintercalative antitumor drugs on DNA triple helix stability: SN-18071 promotes triple helix formation.
    Förtsch I; Birch-Hirschfeld E; Schütz H; Zimmer C
    J Biomol Struct Dyn; 1996 Dec; 14(3):317-29. PubMed ID: 9016409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamic properties of a conformationally constrained intramolecular DNA triple helix.
    Völker J; Osborne SE; Glick GD; Breslauer KJ
    Biochemistry; 1997 Jan; 36(4):756-67. PubMed ID: 9020773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions of intercalative and minor groove binding ligands with triplex poly(dA).[poly(dT)]2 and with duplex poly(dA).poly(dT) and poly[d(A-T)]2 studied by CD, LD, and normal absorption.
    Kim HK; Kim JM; Kim SK; Rodger A; Nordén B
    Biochemistry; 1996 Jan; 35(4):1187-94. PubMed ID: 8573573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 45.