These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 16119243)

  • 1. An array of microactuated microelectrodes for monitoring single-neuronal activity in rodents.
    Muthuswamy J; Okandan M; Gilletti A; Baker MS; Jain T
    IEEE Trans Biomed Eng; 2005 Aug; 52(8):1470-7. PubMed ID: 16119243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic microactuators for precise positioning of neural microelectrodes.
    Muthuswamy J; Okandan M; Jain T; Gilletti A
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1748-55. PubMed ID: 16235660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR; Vetter RJ; Williams JC; Hetke JF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ceramic-based multisite electrode arrays for chronic single-neuron recording.
    Moxon KA; Leiser SC; Gerhardt GA; Barbee KA; Chapin JK
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):647-56. PubMed ID: 15072219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single neuronal recordings using surface micromachined polysilicon microelectrodes.
    Muthuswamy J; Okandan M; Jackson N
    J Neurosci Methods; 2005 Mar; 142(1):45-54. PubMed ID: 15652616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-yield fabrication process for silicon neural probes.
    Oh SJ; Song JK; Kim JW; Kim SJ
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):351-4. PubMed ID: 16485767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microelectrode array for chronic deep-brain microstimulation and recording.
    McCreery D; Lossinsky A; Pikov V; Liu X
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):726-37. PubMed ID: 16602580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film.
    Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR
    J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel high channel-count system for acute multisite neuronal recordings.
    Hofmann UG; Folkers A; Mösch F; Malina T; Menne KM; Biella G; Fagerstedt P; De Schutter E; Jensen W; Yoshida K; Hoehl D; Thomas U; Kindlundh MG; Norlin P; de Curtis M
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1672-7. PubMed ID: 16916102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates.
    Barz F; Livi A; Lanzilotto M; Maranesi M; Bonini L; Paul O; Ruther P
    J Neural Eng; 2017 Jun; 14(3):036010. PubMed ID: 28102825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays.
    Olsson RH; Buhl DL; Sirota AM; Buzsaki G; Wise KD
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A compact architecture for three-dimensional neural microelectrode arrays.
    Perlin GE; Wise KD
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5806-9. PubMed ID: 19164037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings.
    Patel PR; Na K; Zhang H; Kozai TD; Kotov NA; Yoon E; Chestek CA
    J Neural Eng; 2015 Aug; 12(4):046009. PubMed ID: 26035638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental determination of compound action potential direction and propagation velocity from multi-electrode nerve cuffs.
    Rieger R; Taylor J; Comi E; Donaldson N; Russold M; Mahony CM; McLaughlin JA; McAdams E; Demosthenous A; Jarvis JC
    Med Eng Phys; 2004 Jul; 26(6):531-4. PubMed ID: 15234689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microelectrode array fabrication by electrical discharge machining and chemical etching.
    Fofonoff TA; Martel SM; Hatsopoulos NG; Donoghue JP; Hunter IW
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):890-5. PubMed ID: 15188855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex.
    Rousche PJ; Normann RA
    J Neurosci Methods; 1998 Jul; 82(1):1-15. PubMed ID: 10223510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracranial neuronal ensemble recordings and analysis in epilepsy.
    Tóth E; Fabó D; Entz L; Ulbert I; Erőss L
    J Neurosci Methods; 2016 Feb; 260():261-9. PubMed ID: 26453987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.