These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 16119340)

  • 1. A suppressor to prevent direct wave-induced cavitation in shock wave therapy devices.
    Matula TJ; Hilmo PR; Bailey MR
    J Acoust Soc Am; 2005 Jul; 118(1):178-85. PubMed ID: 16119340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy.
    Zhong P; Cocks FH; Cioanta I; Preminger GM
    J Urol; 1997 Dec; 158(6):2323-8. PubMed ID: 9366384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of the effects of cavitation and anatomy in the shock path of model lithotripters.
    Krimmel J; Colonius T; Tanguay M
    Urol Res; 2010 Dec; 38(6):505-18. PubMed ID: 21063697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field.
    Arora M; Junge L; Ohl CD
    Ultrasound Med Biol; 2005 Jun; 31(6):827-39. PubMed ID: 15936498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tandem shock wave cavitation enhancement for extracorporeal lithotripsy.
    Loske AM; Prieto FE; Fernandez F; van Cauwelaert J
    Phys Med Biol; 2002 Nov; 47(22):3945-57. PubMed ID: 12476975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced High-Rate Shockwave Lithotripsy Stone Comminution in an In Vivo Porcine Model Using Acoustic Bubble Coalescence.
    Alavi Tamaddoni H; Roberts WW; Duryea AP; Cain CA; Hall TL
    J Endourol; 2016 Dec; 30(12):1321-1325. PubMed ID: 27762629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.
    Chitnis PV; Cleveland RO
    J Acoust Soc Am; 2006 Apr; 119(4):1929-32. PubMed ID: 16642802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified shock waves for extracorporeal shock wave lithotripsy: a simulation based on the Gilmore formulation.
    Canseco G; de Icaza-Herrera M; Fernández F; Loske AM
    Ultrasonics; 2011 Oct; 51(7):803-10. PubMed ID: 21459398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field.
    Sokolov DL; Bailey MR; Crum LA
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1685-95. PubMed ID: 11572377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High intensity focused ultrasound lithotripsy with cavitating microbubbles.
    Yoshizawa S; Ikeda T; Ito A; Ota R; Takagi S; Matsumoto Y
    Med Biol Eng Comput; 2009 Aug; 47(8):851-60. PubMed ID: 19360448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled cavitation to augment SWL stone comminution: mechanistic insights in vitro.
    Duryea AP; Roberts WW; Cain CA; Hall TL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):301-9. PubMed ID: 23357904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy.
    Sapozhnikov OA; Khokhlova VA; Bailey MR; Williams JC; McAteer JA; Cleveland RO; Crum LA
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1183-95. PubMed ID: 12243163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined short and long-delay tandem shock waves to improve shock wave lithotripsy according to the Gilmore-Akulichev theory.
    de Icaza-Herrera M; Fernández F; Loske AM
    Ultrasonics; 2015 Apr; 58():53-9. PubMed ID: 25553714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turbulent water coupling in shock wave lithotripsy.
    Lautz J; Sankin G; Zhong P
    Phys Med Biol; 2013 Feb; 58(3):735-48. PubMed ID: 23322027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in shock wave lithotripsy.
    Evan AP; Willis LR; McAteer JA; Bailey MR; Connors BA; Shao Y; Lingeman JE; Williams JC; Fineberg NS; Crum LA
    J Urol; 2002 Oct; 168(4 Pt 1):1556-62. PubMed ID: 12352457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.
    Zhong P; Cioanta I; Cocks FH; Preminger GM
    J Acoust Soc Am; 1997 May; 101(5 Pt 1):2940-50. PubMed ID: 9165740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy shielding by cavitation bubble clouds in burst wave lithotripsy.
    Maeda K; Maxwell AD; Colonius T; Kreider W; Bailey MR
    J Acoust Soc Am; 2018 Nov; 144(5):2952. PubMed ID: 30522301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy.
    Wang JC; Zhou Y
    Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel method to control P+/P- ratio of the shock wave pulses used in the extracorporeal piezoelectric lithotripsy (EPL).
    Lewin PA; Chapelon JY; Mestas JL; Birer A; Cathignol D
    Ultrasound Med Biol; 1990; 16(5):473-88. PubMed ID: 2238254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles.
    Weinberg K; Ortiz M
    Biomech Model Mechanobiol; 2009 Aug; 8(4):285-99. PubMed ID: 18807077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.