These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 16119340)

  • 21. The role of energy density and acoustic cavitation in shock wave lithotripsy.
    Loske AM
    Ultrasonics; 2010 Feb; 50(2):300-5. PubMed ID: 19819511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The acoustic fields of the Wolf electrohydraulic lithotripter.
    Campbell DS; Flynn HG; Blackstock DT; Linke C; Carstensen EL
    J Lithotr Stone Dis; 1991 Apr; 3(2):147-56. PubMed ID: 10149155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Focused Ultrasound and Lithotripsy.
    Ikeda T; Yoshizawa S; Koizumi N; Mitsuishi M; Matsumoto Y
    Adv Exp Med Biol; 2016; 880():113-29. PubMed ID: 26486335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Quantitative evaluation of cavitation bubble fields induced by lithotripter shock waves].
    Luderer T; Bohris C; Bellemann ME
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():790-3. PubMed ID: 12465304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improvement of stone fragmentation during shock-wave lithotripsy using a combined EH/PEAA shock-wave generator-in vitro experiments.
    Xi X; Zhong P
    Ultrasound Med Biol; 2000 Mar; 26(3):457-67. PubMed ID: 10773377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lithotripter shock wave interaction with a bubble near various biomaterials.
    Ohl SW; Klaseboer E; Szeri AJ; Khoo BC
    Phys Med Biol; 2016 Oct; 61(19):7031-7053. PubMed ID: 27649337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical haemolysis in shock wave lithotripsy (SWL): II. In vitro cell lysis due to shear.
    Lokhandwalla M; McAteer JA; Williams JC; Sturtevant B
    Phys Med Biol; 2001 Apr; 46(4):1245-64. PubMed ID: 11324963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Importance of the implosion of ESWL-induced cavitation bubbles.
    Delacrétaz G; Rink K; Pittomvils G; Lafaut JP; Vandeursen H; Boving R
    Ultrasound Med Biol; 1995; 21(1):97-103. PubMed ID: 7754583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance characterisation of a passive cavitation detector optimised for subharmonic periodic shock waves from acoustic cavitation in MHz and sub-MHz ultrasound.
    Johansen K; Song JH; Prentice P
    Ultrason Sonochem; 2018 May; 43():146-155. PubMed ID: 29555269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of reflector geometry on the acoustic field and bubble dynamics produced by an electrohydraulic shock wave lithotripter.
    Zhou Y; Zhong P
    J Acoust Soc Am; 2006 Jun; 119(6):3625-36. PubMed ID: 16838506
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strategies for improved shock wave lithotripsy.
    McAteer JA; Bailey MR; Williams JC; Cleveland RO; Evan AP
    Minerva Urol Nefrol; 2005 Dec; 57(4):271-87. PubMed ID: 16247349
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bubble proliferation in the cavitation field of a shock wave lithotripter.
    Pishchalnikov YA; Williams JC; McAteer JA
    J Acoust Soc Am; 2011 Aug; 130(2):EL87-93. PubMed ID: 21877776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound.
    Wang JC; Zhou Y
    Ultrasonics; 2015 Jan; 55():65-74. PubMed ID: 25173067
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Focusing of shock waves induced by optical breakdown in water.
    Sankin GN; Zhou Y; Zhong P
    J Acoust Soc Am; 2008 Jun; 123(6):4071-81. PubMed ID: 18537359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL.
    Zhong P; Zhou Y; Zhu S
    Ultrasound Med Biol; 2001 Jan; 27(1):119-34. PubMed ID: 11295278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acoustic bubble removal to enhance SWL efficacy at high shock rate: an in vitro study.
    Duryea AP; Roberts WW; Cain CA; Tamaddoni HA; Hall TL
    J Endourol; 2014 Jan; 28(1):90-5. PubMed ID: 23957846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter.
    Huber P; Jöchle K; Debus J
    Phys Med Biol; 1998 Oct; 43(10):3113-28. PubMed ID: 9814538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kriging model to study the dynamics of a bubble subjected to tandem shock waves as used in biomedical applications.
    Gutiérrez-Prieto Á; de Icaza-Herrera M; Loske AM; Castaño-Tostado E
    Ultrasonics; 2019 Jan; 91():10-18. PubMed ID: 30029075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II. Cavitation fields.
    Bailey MR; Blackstock DT; Cleveland RO; Crum LA
    J Acoust Soc Am; 1999 Aug; 106(2):1149-60. PubMed ID: 10462818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone.
    Kang G; Cho SC; Coleman AJ; Choi MJ
    J Acoust Soc Am; 2014 Mar; 135(3):1139-48. PubMed ID: 24606257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.