BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 1611991)

  • 1. Adenosine triphosphate-sensitive K+ channels may not be the sole regulators of glucose-induced electrical activity in pancreatic B-cells.
    Henquin JC
    Endocrinology; 1992 Jul; 131(1):127-31. PubMed ID: 1611991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A minimum of fuel is necessary for tolbutamide to mimic the effects of glucose on electrical activity in pancreatic beta-cells.
    Henquin JC
    Endocrinology; 1998 Mar; 139(3):993-8. PubMed ID: 9492030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-sensitive K+ channels may control glucose-induced electrical activity in pancreatic B-cells.
    Henquin JC
    Biochem Biophys Res Commun; 1988 Oct; 156(2):769-75. PubMed ID: 3056403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria.
    Grimmsmann T; Rustenbeck I
    Br J Pharmacol; 1998 Mar; 123(5):781-8. PubMed ID: 9535004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose regulation of insulin secretion independent of the opening or closure of adenosine triphosphate-sensitive K+ channels in beta cells.
    Sato Y; Anello M; Henquin JC
    Endocrinology; 1999 May; 140(5):2252-7. PubMed ID: 10218978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose-induced electrical activity in beta-cells. Feedback control of ATP-sensitive K+ channels by Ca2+? [corrected].
    Henquin JC
    Diabetes; 1990 Nov; 39(11):1457-60. PubMed ID: 2227118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells.
    Gembal M; Gilon P; Henquin JC
    J Clin Invest; 1992 Apr; 89(4):1288-95. PubMed ID: 1556189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of voltage- and Ca2(+)-dependent K+ channels in the control of glucose-induced electrical activity in pancreatic B-cells.
    Henquin JC
    Pflugers Arch; 1990 Jul; 416(5):568-72. PubMed ID: 2235297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two sites of glucose control of insulin release with distinct dependence on the energy state in pancreatic B-cells.
    Detimary P; Gilon P; Nenquin M; Henquin JC
    Biochem J; 1994 Feb; 297 ( Pt 3)(Pt 3):455-61. PubMed ID: 8110181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of glucose-induced biphasic insulin release: physiological role of adenosine triphosphate-sensitive K+ channel-independent glucose action.
    Taguchi N; Aizawa T; Sato Y; Ishihara F; Hashizume K
    Endocrinology; 1995 Sep; 136(9):3942-8. PubMed ID: 7649103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation by tolbutamide and diazoxide of the electrical activity in mouse pancreatic beta-cells recorded in vivo.
    Gomis A; Valdeolmillos M
    Br J Pharmacol; 1998 Feb; 123(3):443-8. PubMed ID: 9504385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tolbutamide as mimic of glucose on beta-cell electrical activity. ATP-sensitive K+ channels as common pathway for both stimuli.
    Cook DL; Ikeuchi M
    Diabetes; 1989 Apr; 38(4):416-21. PubMed ID: 2647550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ionic, electrical, and secretory effects of endogenous cyclic adenosine monophosphate in mouse pancreatic B cells: studies with forskolin.
    Henquin JC; Meissner HP
    Endocrinology; 1984 Sep; 115(3):1125-34. PubMed ID: 6086286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms by which glucose can control insulin release independently from its action on adenosine triphosphate-sensitive K+ channels in mouse B cells.
    Gembal M; Detimary P; Gilon P; Gao ZY; Henquin JC
    J Clin Invest; 1993 Mar; 91(3):871-80. PubMed ID: 8383702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual functional role of membrane depolarization/Ca2+ influx in rat pancreatic B-cell.
    Sato Y; Aizawa T; Komatsu M; Okada N; Yamada T
    Diabetes; 1992 Apr; 41(4):438-43. PubMed ID: 1318855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methyl pyruvate stimulates pancreatic beta-cells by a direct effect on KATP channels, and not as a mitochondrial substrate.
    Düfer M; Krippeit-Drews P; Buntinas L; Siemen D; Drews G
    Biochem J; 2002 Dec; 368(Pt 3):817-25. PubMed ID: 12350226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of sulfonamides on a metabolite-regulated ATPi-sensitive K+ channel in rat pancreatic B-cells.
    Gillis KD; Gee WM; Hammoud A; McDaniel ML; Falke LC; Misler S
    Am J Physiol; 1989 Dec; 257(6 Pt 1):C1119-27. PubMed ID: 2514595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose stimulates glucagon release in single rat alpha-cells by mechanisms that mirror the stimulus-secretion coupling in beta-cells.
    Olsen HL; Theander S; Bokvist K; Buschard K; Wollheim CB; Gromada J
    Endocrinology; 2005 Nov; 146(11):4861-70. PubMed ID: 16081632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP-sensitive K+ channel-independent glucose action in rat pancreatic beta-cell.
    Aizawa T; Sato Y; Ishihara F; Taguchi N; Komatsu M; Suzuki N; Hashizume K; Yamada T
    Am J Physiol; 1994 Mar; 266(3 Pt 1):C622-7. PubMed ID: 8166224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Galanin and epinephrine act on distinct receptors to inhibit insulin release by the same mechanisms including an increase in K+ permeability of the B-cell membrane.
    Drews G; Debuyser A; Nenquin M; Henquin JC
    Endocrinology; 1990 Mar; 126(3):1646-53. PubMed ID: 1689655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.