BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 16120615)

  • 1. Characterizing sterol defect suppressors uncovers a novel transcriptional signaling pathway regulating zymosterol biosynthesis.
    Germann M; Gallo C; Donahue T; Shirzadi R; Stukey J; Lang S; Ruckenstuhl C; Oliaro-Bosso S; McDonough V; Turnowsky F; Balliano G; Nickels JT
    J Biol Chem; 2005 Oct; 280(43):35904-13. PubMed ID: 16120615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of the erg26-1 mutation on the regulation of lipid metabolism in Saccharomyces cerevisiae.
    Baudry K; Swain E; Rahier A; Germann M; Batta A; Rondet S; Mandala S; Henry K; Tint GS; Edlind T; Kurtz M; Nickels JT
    J Biol Chem; 2001 Apr; 276(16):12702-11. PubMed ID: 11279045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the Saccharomyces cerevisiae ERG26 gene encoding the C-3 sterol dehydrogenase (C-4 decarboxylase) involved in sterol biosynthesis.
    Gachotte D; Barbuch R; Gaylor J; Nickel E; Bard M
    Proc Natl Acad Sci U S A; 1998 Nov; 95(23):13794-9. PubMed ID: 9811880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel sequence element is involved in the transcriptional regulation of expression of the ERG1 (squalene epoxidase) gene in Saccharomyces cerevisiae.
    Leber R; Zenz R; Schröttner K; Fuchsbichler S; Pühringer B; Turnowsky F
    Eur J Biochem; 2001 Feb; 268(4):914-24. PubMed ID: 11179957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sterol-dependent regulation of sphingolipid metabolism in Saccharomyces cerevisiae.
    Swain E; Baudry K; Stukey J; McDonough V; Germann M; Nickels JT
    J Biol Chem; 2002 Jul; 277(29):26177-84. PubMed ID: 12006573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae.
    Veen M; Stahl U; Lang C
    FEMS Yeast Res; 2003 Oct; 4(1):87-95. PubMed ID: 14554200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In yeast sterol biosynthesis the 3-keto reductase protein (Erg27p) is required for oxidosqualene cyclase (Erg7p) activity.
    Mo C; Milla P; Athenstaedt K; Ott R; Balliano G; Daum G; Bard M
    Biochim Biophys Acta; 2003 Jul; 1633(1):68-74. PubMed ID: 12842197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual activators of the sterol biosynthetic pathway of Saccharomyces cerevisiae: similar activation/regulatory domains but different response mechanisms.
    Davies BS; Wang HS; Rine J
    Mol Cell Biol; 2005 Aug; 25(16):7375-85. PubMed ID: 16055745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and characterization of the 2,3-oxidosqualene cyclase-coding gene of Candida albicans.
    Kelly R; Miller SM; Lai MH; Kirsch DR
    Gene; 1990 Mar; 87(2):177-83. PubMed ID: 2185141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the Saccharomyces cerevisiae ERG27 gene encoding the 3-keto reductase involved in C-4 sterol demethylation.
    Gachotte D; Sen SE; Eckstein J; Barbuch R; Krieger M; Ray BD; Bard M
    Proc Natl Acad Sci U S A; 1999 Oct; 96(22):12655-60. PubMed ID: 10535978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of ergosterol biosynthesis and sterol uptake in a sterol-auxotrophic yeast.
    Lorenz RT; Parks LW
    J Bacteriol; 1987 Aug; 169(8):3707-11. PubMed ID: 3301810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae.
    Kennedy MA; Barbuch R; Bard M
    Biochim Biophys Acta; 1999 Apr; 1445(1):110-22. PubMed ID: 10209263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and characterization of the erg1 gene of Trichoderma harzianum: effect of the erg1 silencing on ergosterol biosynthesis and resistance to terbinafine.
    Cardoza RE; Vizcaíno JA; Hermosa MR; Sousa S; González FJ; Llobell A; Monte E; Gutiérrez S
    Fungal Genet Biol; 2006 Mar; 43(3):164-78. PubMed ID: 16466954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RPD3 (REC3) mutations affect mitotic recombination in Saccharomyces cerevisiae.
    Dora EG; Rudin N; Martell JR; Esposito MS; Ramírez RM
    Curr Genet; 1999 Mar; 35(2):68-76. PubMed ID: 10079324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of heme biosynthesis in control of sterol uptake by Saccharomyces cerevisiae.
    Lewis TA; Taylor FR; Parks LW
    J Bacteriol; 1985 Jul; 163(1):199-207. PubMed ID: 3891725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast mutants deficient in heme biosynthesis and a heme mutant additionally blocked in cyclization of 2,3-oxidosqualene.
    Gollub EG; Liu KP; Dayan J; Adlersberg M; Sprinson DB
    J Biol Chem; 1977 May; 252(9):2846-54. PubMed ID: 323256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of squalene epoxidase of Saccharomyces cerevisiae by applying terbinafine-sensitive variants.
    Ruckenstuhl C; Lang S; Poschenel A; Eidenberger A; Baral PK; Kohút P; Hapala I; Gruber K; Turnowsky F
    Antimicrob Agents Chemother; 2007 Jan; 51(1):275-84. PubMed ID: 17043127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upc2p and Ecm22p, dual regulators of sterol biosynthesis in Saccharomyces cerevisiae.
    Vik A ; Rine J
    Mol Cell Biol; 2001 Oct; 21(19):6395-405. PubMed ID: 11533229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Squalene epoxidase as a target for manipulation of squalene levels in the yeast Saccharomyces cerevisiae.
    Garaiová M; Zambojová V; Simová Z; Griač P; Hapala I
    FEMS Yeast Res; 2014 Mar; 14(2):310-23. PubMed ID: 24119181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid saturation induces degradation of squalene epoxidase for sterol homeostasis and cell survival.
    Huang LJ; Chen RH
    Life Sci Alliance; 2023 Jan; 6(1):. PubMed ID: 36368908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.