These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 16120778)
1. Existing motor state is favored at the expense of new movement during 13-35 Hz oscillatory synchrony in the human corticospinal system. Gilbertson T; Lalo E; Doyle L; Di Lazzaro V; Cioni B; Brown P J Neurosci; 2005 Aug; 25(34):7771-9. PubMed ID: 16120778 [TBL] [Abstract][Full Text] [Related]
2. Corrective movements in response to displacements in visual feedback are more effective during periods of 13-35 Hz oscillatory synchrony in the human corticospinal system. Androulidakis AG; Doyle LM; Gilbertson TP; Brown P Eur J Neurosci; 2006 Dec; 24(11):3299-304. PubMed ID: 17156390 [TBL] [Abstract][Full Text] [Related]
3. Anticipatory changes in beta synchrony in the human corticospinal system and associated improvements in task performance. Androulidakis AG; Doyle LM; Yarrow K; Litvak V; Gilbertson TP; Brown P Eur J Neurosci; 2007 Jun; 25(12):3758-65. PubMed ID: 17610595 [TBL] [Abstract][Full Text] [Related]
4. A role of beta oscillatory synchrony in biasing response competition? van Wijk BC; Daffertshofer A; Roach N; Praamstra P Cereb Cortex; 2009 Jun; 19(6):1294-302. PubMed ID: 18836098 [TBL] [Abstract][Full Text] [Related]
5. Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Gerloff C; Richard J; Hadley J; Schulman AE; Honda M; Hallett M Brain; 1998 Aug; 121 ( Pt 8)():1513-31. PubMed ID: 9712013 [TBL] [Abstract][Full Text] [Related]
6. Premovement activities in the subthalamic area of patients with Parkinson's disease and their dependence on task. Kempf F; Kühn AA; Kupsch A; Brücke C; Weise L; Schneider GH; Brown P Eur J Neurosci; 2007 May; 25(10):3137-45. PubMed ID: 17561827 [TBL] [Abstract][Full Text] [Related]
7. Time course of corticospinal excitability in reaction time and self-paced movements. Chen R; Yaseen Z; Cohen LG; Hallett M Ann Neurol; 1998 Sep; 44(3):317-25. PubMed ID: 9749597 [TBL] [Abstract][Full Text] [Related]
8. Protracted exercise without overt neuromuscular fatigue influences cortical excitability. Crupi D; Cruciata G; Moisello C; Green PA; Naro A; Ricciardi L; Perfetti B; Bove M; Avanzino L; Di Rocco A; Quartarone A; Ghilardi MF J Mot Behav; 2013; 45(2):127-38. PubMed ID: 23488595 [TBL] [Abstract][Full Text] [Related]
9. Recruitment of Additional Corticospinal Pathways in the Human Brain with State-Dependent Paired Associative Stimulation. Kraus D; Naros G; Guggenberger R; Leão MT; Ziemann U; Gharabaghi A J Neurosci; 2018 Feb; 38(6):1396-1407. PubMed ID: 29335359 [TBL] [Abstract][Full Text] [Related]
10. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task. Rektor I; Sochůrková D; Bocková M Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240 [TBL] [Abstract][Full Text] [Related]
11. Self-paced movements induce high-frequency gamma oscillations in primary motor cortex. Cheyne D; Bells S; Ferrari P; Gaetz W; Bostan AC Neuroimage; 2008 Aug; 42(1):332-42. PubMed ID: 18511304 [TBL] [Abstract][Full Text] [Related]
12. Human cortical activities during Go/NoGo tasks with opposite motor control paradigms. Yamanaka K; Kimura T; Miyazaki M; Kawashima N; Nozaki D; Nakazawa K; Yano H; Yamamoto Y Exp Brain Res; 2002 Feb; 142(3):301-7. PubMed ID: 11819037 [TBL] [Abstract][Full Text] [Related]
13. Motor cortical and other cortical interneuronal networks that generate very high frequency waves. Amassian VE; Stewart M Suppl Clin Neurophysiol; 2003; 56():119-42. PubMed ID: 14677387 [TBL] [Abstract][Full Text] [Related]
14. Cortical and reticular contributions to human precision and power grip. Tazoe T; Perez MA J Physiol; 2017 Apr; 595(8):2715-2730. PubMed ID: 27891607 [TBL] [Abstract][Full Text] [Related]
15. Cortical brain states and corticospinal synchronization influence TMS-evoked motor potentials. Keil J; Timm J; Sanmiguel I; Schulz H; Obleser J; Schönwiesner M J Neurophysiol; 2014 Feb; 111(3):513-9. PubMed ID: 24198325 [TBL] [Abstract][Full Text] [Related]
16. Do brain oscillations of different frequencies indicate interaction between cortical areas in humans? Pfurtscheller G; Neuper C; Pichler-Zalaudek K; Edlinger G; Lopes da Silva FH Neurosci Lett; 2000 May; 286(1):66-8. PubMed ID: 10822154 [TBL] [Abstract][Full Text] [Related]
17. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson's disease. Weiss D; Klotz R; Govindan RB; Scholten M; Naros G; Ramos-Murguialday A; Bunjes F; Meisner C; Plewnia C; Krüger R; Gharabaghi A Brain; 2015 Mar; 138(Pt 3):679-93. PubMed ID: 25558877 [TBL] [Abstract][Full Text] [Related]
18. Event-related desynchronization of motor cortical oscillations in patients with multiple system atrophy. Levy R; Lozano AM; Lang AE; Dostrovsky JO Exp Brain Res; 2010 Sep; 206(1):1-13. PubMed ID: 20821197 [TBL] [Abstract][Full Text] [Related]
19. Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output. Kristeva R; Patino L; Omlor W Neuroimage; 2007 Jul; 36(3):785-92. PubMed ID: 17493837 [TBL] [Abstract][Full Text] [Related]
20. Modulation of corticospinal excitability and intracortical inhibition during motor imagery is task-dependent. Stinear CM; Byblow WD Exp Brain Res; 2004 Aug; 157(3):351-8. PubMed ID: 14997259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]