These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 16120833)

  • 1. Effects of nucleotide substitution and modification on the stability and structure of helix 69 from 28S rRNA.
    Sumita M; Desaulniers JP; Chang YC; Chui HM; Clos L; Chow CS
    RNA; 2005 Sep; 11(9):1420-9. PubMed ID: 16120833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of solution conformations and stabilities of modified helix 69 rRNA analogs from bacteria and human.
    Sumita M; Jiang J; SantaLucia J; Chow CS
    Biopolymers; 2012 Feb; 97(2):94-106. PubMed ID: 21858779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of helix 69 of Escherichia coli 23S rRNA containing its natural modified nucleosides, m(3)Psi and Psi.
    Chui HM; Desaulniers JP; Scaringe SA; Chow CS
    J Org Chem; 2002 Dec; 67(25):8847-54. PubMed ID: 12467398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of conformational changes in helix 69 mutants by pseudouridine modifications.
    Jiang J; Kharel DN; Chow CS
    Biophys Chem; 2015; 200-201():48-55. PubMed ID: 25800680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique structural and stabilizing roles for the individual pseudouridine residues in the 1920 region of Escherichia coli 23S rRNA.
    Meroueh M; Grohar PJ; Qiu J; SantaLucia J; Scaringe SA; Chow CS
    Nucleic Acids Res; 2000 May; 28(10):2075-83. PubMed ID: 10773075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure modulation of helix 69 from Escherichia coli 23S ribosomal RNA by pseudouridylations.
    Jiang J; Aduri R; Chow CS; SantaLucia J
    Nucleic Acids Res; 2014 Apr; 42(6):3971-81. PubMed ID: 24371282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudouridines and pseudouridine synthases of the ribosome.
    Ofengand J; Malhotra A; Remme J; Gutgsell NS; Del Campo M; Jean-Charles S; Peil L; Kaya Y
    Cold Spring Harb Symp Quant Biol; 2001; 66():147-59. PubMed ID: 12762017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudouridine in RNA: what, where, how, and why.
    Charette M; Gray MW
    IUBMB Life; 2000 May; 49(5):341-51. PubMed ID: 10902565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An RNA model system for investigation of pseudouridine stabilization of the codon-anticodon interaction in tRNALys, tRNAHis and tRNATyr.
    Davis DR; Veltri CA; Nielsen L
    J Biomol Struct Dyn; 1998 Jun; 15(6):1121-32. PubMed ID: 9669557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional roles of the N1- and N3-protons of psi at tRNA's position 39.
    Yarian CS; Basti MM; Cain RJ; Ansari G; Guenther RH; Sochacka E; Czerwinska G; Malkiewicz A; Agris PF
    Nucleic Acids Res; 1999 Sep; 27(17):3543-9. PubMed ID: 10446245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical probing for examining the structure of modified RNAs and ligand binding to RNA.
    Waduge P; Sakakibara Y; Chow CS
    Methods; 2019 Mar; 156():110-120. PubMed ID: 30391513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts.
    Ofengand J; Bakin A
    J Mol Biol; 1997 Feb; 266(2):246-68. PubMed ID: 9047361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudouridine-Free Escherichia coli Ribosomes.
    O'Connor M; Leppik M; Remme J
    J Bacteriol; 2018 Feb; 200(4):. PubMed ID: 29180357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic contribution and nearest-neighbor parameters of pseudouridine-adenosine base pairs in oligoribonucleotides.
    Hudson GA; Bloomingdale RJ; Znosko BM
    RNA; 2013 Nov; 19(11):1474-82. PubMed ID: 24062573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of RNA stacking by pseudouridine.
    Davis DR
    Nucleic Acids Res; 1995 Dec; 23(24):5020-6. PubMed ID: 8559660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudouridines in rRNA helix 69 play a role in loop stacking interactions.
    Desaulniers JP; Chang YC; Aduri R; Abeysirigunawardena SC; SantaLucia J; Chow CS
    Org Biomol Chem; 2008 Nov; 6(21):3892-5. PubMed ID: 18931791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudouridylation of 23S rRNA helix 69 promotes peptide release by release factor RF2 but not by release factor RF1.
    Kipper K; Sild S; Hetényi C; Remme J; Liiv A
    Biochimie; 2011 May; 93(5):834-44. PubMed ID: 21281690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of aminoglycoside antibiotics to helix 69 of 23S rRNA.
    Scheunemann AE; Graham WD; Vendeix FA; Agris PF
    Nucleic Acids Res; 2010 May; 38(9):3094-105. PubMed ID: 20110260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of pseudouridine and pH on the structure and dynamics of the anticodon stem-loop of tRNA(Lys,3).
    Durant PC; Davis DR
    Nucleic Acids Symp Ser; 1997; (36):56-7. PubMed ID: 9478205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs.
    Becker HF; Motorin Y; Sissler M; Florentz C; Grosjean H
    J Mol Biol; 1997 Dec; 274(4):505-18. PubMed ID: 9417931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.