BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 1612123)

  • 81. The Synthetic Antimicrobial Peptide 19-2.5 Interacts with Heparanase and Heparan Sulfate in Murine and Human Sepsis.
    Martin L; De Santis R; Koczera P; Simons N; Haase H; Heinbockel L; Brandenburg K; Marx G; Schuerholz T
    PLoS One; 2015; 10(11):e0143583. PubMed ID: 26600070
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans.
    Gingis-Velitski S; Zetser A; Kaplan V; Ben-Zaken O; Cohen E; Levy-Adam F; Bashenko Y; Flugelman MY; Vlodavsky I; Ilan N
    J Biol Chem; 2004 Oct; 279(42):44084-92. PubMed ID: 15292202
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Cell surface heparan sulfate released by heparanase promotes melanoma cell migration and angiogenesis.
    Roy M; Marchetti D
    J Cell Biochem; 2009 Feb; 106(2):200-9. PubMed ID: 19115257
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Heparan sulfate endoglycosidase and metastatic potential in murine fibrosarcoma and melanoma.
    Ricoveri W; Cappelletti R
    Cancer Res; 1986 Aug; 46(8):3855-61. PubMed ID: 3731061
    [TBL] [Abstract][Full Text] [Related]  

  • 85. An iminosugar-based heparanase inhibitor heparastatin (SF4) suppresses infiltration of neutrophils and monocytes into inflamed dorsal air pouches.
    Sue M; Higashi N; Shida H; Kogane Y; Nishimura Y; Adachi H; Kolaczkowska E; Kepka M; Nakajima M; Irimura T
    Int Immunopharmacol; 2016 Jun; 35():15-21. PubMed ID: 27015605
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Pro-Angiogenic Effects of Latent Heparanase and Thrombin Receptor-Mediated Pathways-Do They Share a Common Ground in Melanoma Cells?
    Hoß SG; Grundmann M; Benkel T; Gockel L; Schwarz S; Kostenis E; Schlesinger M; Ilan N; Vlodavsky I; Bendas G
    Thromb Haemost; 2018 Oct; 118(10):1803-1814. PubMed ID: 30235481
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Cell surface-expressed cation-independent mannose 6-phosphate receptor (CD222) binds enzymatically active heparanase independently of mannose 6-phosphate to promote extracellular matrix degradation.
    Wood RJ; Hulett MD
    J Biol Chem; 2008 Feb; 283(7):4165-76. PubMed ID: 18073203
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Alteration of endothelial proteoglycan and heparanase gene expression by high glucose, insulin and heparin.
    Han J; Hiebert LM
    Vascul Pharmacol; 2013; 59(3-4):112-8. PubMed ID: 23939434
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Thrombin modulates vectorial secretion of extracellular matrix proteins in cultured endothelial cells.
    Papadimitriou E; Manolopoulos VG; Hayman GT; Maragoudakis ME; Unsworth BR; Fenton JW; Lelkes PI
    Am J Physiol; 1997 Apr; 272(4 Pt 1):C1112-22. PubMed ID: 9142835
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis.
    Patel VN; Knox SM; Likar KM; Lathrop CA; Hossain R; Eftekhari S; Whitelock JM; Elkin M; Vlodavsky I; Hoffman MP
    Development; 2007 Dec; 134(23):4177-86. PubMed ID: 17959718
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism?
    Vlodavsky I; Bar-Shavit R; Ishai-Michaeli R; Bashkin P; Fuks Z
    Trends Biochem Sci; 1991 Jul; 16(7):268-71. PubMed ID: 1926336
    [TBL] [Abstract][Full Text] [Related]  

  • 92. An Overview of the Structure, Mechanism and Specificity of Human Heparanase.
    Wu L; Davies GJ
    Adv Exp Med Biol; 2020; 1221():139-167. PubMed ID: 32274709
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The Development of Assays for Heparanase Enzymatic Activity: Towards a Gold Standard.
    Chhabra M; Ferro V
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30441818
    [TBL] [Abstract][Full Text] [Related]  

  • 94. 1H NMR spectroscopic studies establish that heparanase is a retaining glycosidase.
    Wilson JC; Laloo AE; Singh S; Ferro V
    Biochem Biophys Res Commun; 2014 Jan; 443(1):185-8. PubMed ID: 24291708
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Role of glycosidases in human ovarian carcinoma cell mediated degradation of subendothelial extracellular matrix.
    Niedbala MJ; Madiyalakan R; Matta K; Crickard K; Sharma M; Bernacki RJ
    Cancer Res; 1987 Sep; 47(17):4634-41. PubMed ID: 2957046
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Heparan Sulfate in the Tumor Microenvironment.
    Bartolini B; Caravà E; Caon I; Parnigoni A; Moretto P; Passi A; Vigetti D; Viola M; Karousou E
    Adv Exp Med Biol; 2020; 1245():147-161. PubMed ID: 32266657
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Heparanase patents: dim past and bright future.
    Nasser NJ; Nevo E
    Recent Pat Inflamm Allergy Drug Discov; 2013 May; 7(2):162-7. PubMed ID: 23537141
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Requirement of the conserved, hydrophobic C-terminus region for the activation of heparanase.
    Lai NS; Simizu S; Morisaki D; Muroi M; Osada H
    Exp Cell Res; 2008 Sep; 314(15):2834-45. PubMed ID: 18662687
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Heparanase localization during palatogenesis in mice.
    Hirata A; Katayama K; Tsuji T; Natsume N; Sugahara T; Koga Y; Takano K; Otsuki Y; Nakamura H
    Biomed Res Int; 2013; 2013():760236. PubMed ID: 23509775
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Inhibition of heparanase activity and heparanase-induced angiogenesis by suramin analogues.
    Marchetti D; Reiland J; Erwin B; Roy M
    Int J Cancer; 2003 Mar; 104(2):167-74. PubMed ID: 12569571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.