BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16121252)

  • 21. Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula.
    Aubert G; Morin J; Jacquin F; Loridon K; Quillet MC; Petit A; Rameau C; Lejeune-Hénaut I; Huguet T; Burstin J
    Theor Appl Genet; 2006 Apr; 112(6):1024-41. PubMed ID: 16416153
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers.
    de Melo NF; Guerra M
    Ann Bot; 2003 Aug; 92(2):309-16. PubMed ID: 12876193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolutionary dynamics of 5S rDNA location in acridid grasshoppers and its relationship with H3 histone gene and 45S rDNA location.
    Cabral-de-Mello DC; Cabrero J; López-León MD; Camacho JP
    Genetica; 2011 Jul; 139(7):921-31. PubMed ID: 21755328
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of 5S and 45S rDNA sites in Chrysanthemum species by using oligonucleotide fluorescence in situ hybridization (Oligo-FISH).
    He J; Lin S; Yu Z; Song A; Guan Z; Fang W; Chen S; Zhang F; Jiang J; Chen F; Wang H
    Mol Biol Rep; 2021 Jan; 48(1):21-31. PubMed ID: 33454907
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Chromosome Number and rDNA Loci Evolution in
    Yucel G; Betekhtin A; Cabi E; Tuna M; Hasterok R; Kolano B
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Localization of the 5S and 45S rDNA sites and cpDNA sequence analysis in species of the Quadrifaria group of Paspalum (Poaceae, Paniceae).
    Vaio M; Speranza P; Valls JF; Guerra M; Mazzella C
    Ann Bot; 2005 Aug; 96(2):191-200. PubMed ID: 15911540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Chromosomal localization of 5S and 45S ribosomal DNA in species of Linum L. section Linum (syn=Protolinum and Adenolinum)].
    Muravenko OV; Amosova AV; Samatadze TE; Semenova OIu; Nosova IV; Popov KV; Shostak NG; Zoshchuk SA; Zelenin AV
    Genetika; 2004 Feb; 40(2):256-60. PubMed ID: 15065434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromosomal localization of rDNA in the Brassicaceae.
    Ali HB; Lysak MA; Schubert I
    Genome; 2005 Apr; 48(2):341-6. PubMed ID: 15838557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microsynteny between pea and Medicago truncatula in the SYM2 region.
    Gualtieri G; Kulikova O; Limpens E; Kim DJ; Cook DR; Bisselin T; Geurts R
    Plant Mol Biol; 2002 Sep; 50(2):225-35. PubMed ID: 12175015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants.
    Rosato M; Kovařík A; Garilleti R; Rosselló JA
    PLoS One; 2016; 11(9):e0162544. PubMed ID: 27622766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterochromatin patterns and ribosomal DNA loci distribution in diploid and polyploid Crotalaria species (Leguminosae, Papilionoideae), and inferences on karyotype evolution.
    Mondin M; Aguiar-Perecin ML
    Genome; 2011 Sep; 54(9):718-26. PubMed ID: 21864195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Karyological and nuclear DNA content variation of the genus Asparagus.
    Plath S; Klocke E; Nothnagel T
    PLoS One; 2022; 17(3):e0265405. PubMed ID: 35294505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae.
    Hasterok R; Wolny E; Hosiawa M; Kowalczyk M; Kulak-Ksiazczyk S; Ksiazczyk T; Heneen WK; Maluszynska J
    Ann Bot; 2006 Feb; 97(2):205-16. PubMed ID: 16357054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phylogeny and genomic organization of the TIR and non-tIR NBS-LRR resistance gene family in Medicago truncatula.
    Zhu H; Cannon SB; Young ND; Cook DR
    Mol Plant Microbe Interact; 2002 Jun; 15(6):529-39. PubMed ID: 12059101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Linked 5S and 45S rDNA sites are highly conserved through the subfamily Aurantioideae (Rutaceae).
    Barros E Silva AE; Dos Santos Soares Filho W; Guerra M
    Cytogenet Genome Res; 2013; 140(1):62-9. PubMed ID: 23635472
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physical mapping of rDNA and heterochromatin in chromosomes of 16 Coffea species: a revised view of species differentiation.
    Hamon P; Siljak-Yakovlev S; Srisuwan S; Robin O; Poncet V; Hamon S; de Kochko A
    Chromosome Res; 2009; 17(3):291-304. PubMed ID: 19333769
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution.
    Pedrosa-Harand A; de Almeida CC; Mosiolek M; Blair MW; Schweizer D; Guerra M
    Theor Appl Genet; 2006 Mar; 112(5):924-33. PubMed ID: 16397788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The striking and unexpected cytogenetic diversity of genus Tanacetum L. (Asteraceae): a cytometric and fluorescent in situ hybridisation study of Iranian taxa.
    Olanj N; Garnatje T; Sonboli A; Vallès J; Garcia S
    BMC Plant Biol; 2015 Jul; 15():174. PubMed ID: 26152193
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromosomal organization of the 18S and 5S rRNAs and histone H3 genes in Scarabaeinae coleopterans: insights into the evolutionary dynamics of multigene families and heterochromatin.
    Cabral-de-Mello DC; Oliveira SG; de Moura RC; Martins C
    BMC Genet; 2011 Oct; 12():88. PubMed ID: 21999519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular Evolution and Organization of Ribosomal DNA in the Hawkweed Tribe Hieraciinae (Cichorieae, Asteraceae).
    Fehrer J; Slavíková R; Paštová L; Josefiová J; Mráz P; Chrtek J; Bertrand YJK
    Front Plant Sci; 2021; 12():647375. PubMed ID: 33777082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.