These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 16121259)

  • 1. Genome-wide requirements for resistance to functionally distinct DNA-damaging agents.
    Lee W; St Onge RP; Proctor M; Flaherty P; Jordan MI; Arkin AP; Davis RW; Nislow C; Giaever G
    PLoS Genet; 2005 Aug; 1(2):e24. PubMed ID: 16121259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systems pharmacogenomics in yeast.
    Cahan P; Marsh S; McLeod HL
    Pharmacogenomics; 2006 Mar; 7(2):255-9. PubMed ID: 16515406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic screening in vivo reveals the role played by vacuolar H+ ATPase and cytosolic acidification in sensitivity to DNA-damaging agents such as cisplatin.
    Liao C; Hu B; Arno MJ; Panaretou B
    Mol Pharmacol; 2007 Feb; 71(2):416-25. PubMed ID: 17093137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Previously uncharacterized genes in the UV- and MMS-induced DNA damage response in yeast.
    Hanway D; Chin JK; Xia G; Oshiro G; Winzeler EA; Romesberg FE
    Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10605-10. PubMed ID: 12149442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures.
    Pierce SE; Davis RW; Nislow C; Giaever G
    Nat Protoc; 2007; 2(11):2958-74. PubMed ID: 18007632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genome-wide portrait of pervasive drug contaminants.
    Ogbede JU; Giaever G; Nislow C
    Sci Rep; 2021 Jun; 11(1):12487. PubMed ID: 34127714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene transcription analysis of Saccharomyces cerevisiae exposed to neocarzinostatin protein-chromophore complex reveals evidence of DNA damage, a potential mechanism of resistance, and consequences of prolonged exposure.
    Schaus SE; Cavalieri D; Myers AG
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11075-80. PubMed ID: 11562456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical genetic and chemogenomic analysis in yeast.
    Coorey NV; Sampson LD; Barber JM; Bellows DS
    Methods Mol Biol; 2014; 1205():169-86. PubMed ID: 25213245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The DNA-damage signature in Saccharomyces cerevisiae is associated with single-strand breaks in DNA.
    Fry RC; DeMott MS; Cosgrove JP; Begley TJ; Samson LD; Dedon PC
    BMC Genomics; 2006 Dec; 7():313. PubMed ID: 17163986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage.
    Chang M; Bellaoui M; Boone C; Brown GW
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16934-9. PubMed ID: 12482937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemogenomic approaches to elucidation of gene function and genetic pathways.
    Pierce SE; Davis RW; Nislow C; Giaever G
    Methods Mol Biol; 2009; 548():115-43. PubMed ID: 19521822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures.
    Dunn B; Levine RP; Sherlock G
    BMC Genomics; 2005 Apr; 6():53. PubMed ID: 15833139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide analysis of cellular response to bacterial genotoxin CdtB in yeast.
    Kitagawa T; Hoshida H; Akada R
    Infect Immun; 2007 Mar; 75(3):1393-402. PubMed ID: 17220322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new approach to species determination for yeast strains: DNA microarray-based comparative genomic hybridization using a yeast DNA microarray with 6000 genes.
    Watanabe T; Murata Y; Oka S; Iwahashi H
    Yeast; 2004 Mar; 21(4):351-65. PubMed ID: 15042595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide responses to DNA-damaging agents.
    Fry RC; Begley TJ; Samson LD
    Annu Rev Microbiol; 2005; 59():357-77. PubMed ID: 16153173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further phenotypic characterization of pso mutants of Saccharomyces cerevisiae with respect to DNA repair and response to oxidative stress.
    Pungartnik C; Picada J; Brendel M; Henriques JA
    Genet Mol Res; 2002 Mar; 1(1):79-89. PubMed ID: 14963816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic approaches for identifying DNA damage response pathways in S. cerevisiae.
    Chang M; Parsons AB; Sheikh BH; Boone C; Brown GW
    Methods Enzymol; 2006; 409():213-35. PubMed ID: 16793404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global analysis of gene function in yeast by quantitative phenotypic profiling.
    Brown JA; Sherlock G; Myers CL; Burrows NM; Deng C; Wu HI; McCann KE; Troyanskaya OG; Brown JM
    Mol Syst Biol; 2006; 2():2006.0001. PubMed ID: 16738548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The anticancer ruthenium complex KP1019 induces DNA damage, leading to cell cycle delay and cell death in Saccharomyces cerevisiae.
    Stevens SK; Strehle AP; Miller RL; Gammons SH; Hoffman KJ; McCarty JT; Miller ME; Stultz LK; Hanson PK
    Mol Pharmacol; 2013 Jan; 83(1):225-34. PubMed ID: 23090979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recursive expectation-maximization clustering: a method for identifying buffering mechanisms composed of phenomic modules.
    Guo J; Tian D; McKinney BA; Hartman JL
    Chaos; 2010 Jun; 20(2):026103. PubMed ID: 20590332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.