BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 16121259)

  • 1. Genome-wide requirements for resistance to functionally distinct DNA-damaging agents.
    Lee W; St Onge RP; Proctor M; Flaherty P; Jordan MI; Arkin AP; Davis RW; Nislow C; Giaever G
    PLoS Genet; 2005 Aug; 1(2):e24. PubMed ID: 16121259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systems pharmacogenomics in yeast.
    Cahan P; Marsh S; McLeod HL
    Pharmacogenomics; 2006 Mar; 7(2):255-9. PubMed ID: 16515406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic screening in vivo reveals the role played by vacuolar H+ ATPase and cytosolic acidification in sensitivity to DNA-damaging agents such as cisplatin.
    Liao C; Hu B; Arno MJ; Panaretou B
    Mol Pharmacol; 2007 Feb; 71(2):416-25. PubMed ID: 17093137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Previously uncharacterized genes in the UV- and MMS-induced DNA damage response in yeast.
    Hanway D; Chin JK; Xia G; Oshiro G; Winzeler EA; Romesberg FE
    Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10605-10. PubMed ID: 12149442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures.
    Pierce SE; Davis RW; Nislow C; Giaever G
    Nat Protoc; 2007; 2(11):2958-74. PubMed ID: 18007632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genome-wide portrait of pervasive drug contaminants.
    Ogbede JU; Giaever G; Nislow C
    Sci Rep; 2021 Jun; 11(1):12487. PubMed ID: 34127714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene transcription analysis of Saccharomyces cerevisiae exposed to neocarzinostatin protein-chromophore complex reveals evidence of DNA damage, a potential mechanism of resistance, and consequences of prolonged exposure.
    Schaus SE; Cavalieri D; Myers AG
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11075-80. PubMed ID: 11562456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical genetic and chemogenomic analysis in yeast.
    Coorey NV; Sampson LD; Barber JM; Bellows DS
    Methods Mol Biol; 2014; 1205():169-86. PubMed ID: 25213245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The DNA-damage signature in Saccharomyces cerevisiae is associated with single-strand breaks in DNA.
    Fry RC; DeMott MS; Cosgrove JP; Begley TJ; Samson LD; Dedon PC
    BMC Genomics; 2006 Dec; 7():313. PubMed ID: 17163986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage.
    Chang M; Bellaoui M; Boone C; Brown GW
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16934-9. PubMed ID: 12482937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemogenomic approaches to elucidation of gene function and genetic pathways.
    Pierce SE; Davis RW; Nislow C; Giaever G
    Methods Mol Biol; 2009; 548():115-43. PubMed ID: 19521822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures.
    Dunn B; Levine RP; Sherlock G
    BMC Genomics; 2005 Apr; 6():53. PubMed ID: 15833139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide analysis of cellular response to bacterial genotoxin CdtB in yeast.
    Kitagawa T; Hoshida H; Akada R
    Infect Immun; 2007 Mar; 75(3):1393-402. PubMed ID: 17220322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new approach to species determination for yeast strains: DNA microarray-based comparative genomic hybridization using a yeast DNA microarray with 6000 genes.
    Watanabe T; Murata Y; Oka S; Iwahashi H
    Yeast; 2004 Mar; 21(4):351-65. PubMed ID: 15042595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide responses to DNA-damaging agents.
    Fry RC; Begley TJ; Samson LD
    Annu Rev Microbiol; 2005; 59():357-77. PubMed ID: 16153173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further phenotypic characterization of pso mutants of Saccharomyces cerevisiae with respect to DNA repair and response to oxidative stress.
    Pungartnik C; Picada J; Brendel M; Henriques JA
    Genet Mol Res; 2002 Mar; 1(1):79-89. PubMed ID: 14963816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic approaches for identifying DNA damage response pathways in S. cerevisiae.
    Chang M; Parsons AB; Sheikh BH; Boone C; Brown GW
    Methods Enzymol; 2006; 409():213-35. PubMed ID: 16793404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global analysis of gene function in yeast by quantitative phenotypic profiling.
    Brown JA; Sherlock G; Myers CL; Burrows NM; Deng C; Wu HI; McCann KE; Troyanskaya OG; Brown JM
    Mol Syst Biol; 2006; 2():2006.0001. PubMed ID: 16738548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The anticancer ruthenium complex KP1019 induces DNA damage, leading to cell cycle delay and cell death in Saccharomyces cerevisiae.
    Stevens SK; Strehle AP; Miller RL; Gammons SH; Hoffman KJ; McCarty JT; Miller ME; Stultz LK; Hanson PK
    Mol Pharmacol; 2013 Jan; 83(1):225-34. PubMed ID: 23090979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recursive expectation-maximization clustering: a method for identifying buffering mechanisms composed of phenomic modules.
    Guo J; Tian D; McKinney BA; Hartman JL
    Chaos; 2010 Jun; 20(2):026103. PubMed ID: 20590332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.