These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 16121270)

  • 1. Determination and evaluation of hexavalent chromium in power plant coal combustion by-products and cost-effective environmental remediation solutions using acid mine drainage.
    Kingston HM; Cain R; Huo D; Rahman GM
    J Environ Monit; 2005 Sep; 7(9):899-905. PubMed ID: 16121270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speciation of Cr and its leachability in coal by-products from spanish coal combustion plants.
    López-Antón MA; Díaz-Somoano M; Cuesta AF; Riesco AR; Martínez-Tarazona MR
    J Environ Monit; 2008 Jun; 10(6):778-81. PubMed ID: 18528547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implication of chromium speciation on disposal of discarded CCA-treated wood.
    Song J; Dubey B; Jang YC; Townsend T; Solo-Gabriele H
    J Hazard Mater; 2006 Feb; 128(2-3):280-8. PubMed ID: 16165268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental risks of farmed and barren alkaline coal ash landfills in Tuzla, Bosnia and Herzegovina.
    Dellantonio A; Fitz WJ; Custovic H; Repmann F; Schneider BU; Grünewald H; Gruber V; Zgorelec Z; Zerem N; Carter C; Markovic M; Puschenreiter M; Wenzel WW
    Environ Pollut; 2008 Jun; 153(3):677-86. PubMed ID: 17949870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of synchrotron XANES and Cr-doped coal to further confirm the vaporization of organically bound Cr and the formation of chromium(VI) during coal oxy-fuel combustion.
    Chen J; Jiao F; Zhang L; Yao H; Ninomiya Y
    Environ Sci Technol; 2012 Mar; 46(6):3567-73. PubMed ID: 22397359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.
    Jambeck J; Weitz K; Solo-Gabriele H; Townsend T; Thorneloe S
    Waste Manag; 2007; 27(8):S21-8. PubMed ID: 17416510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the removal of hexavalent chromium from a Class F fly ash.
    Huggins FE; Rezaee M; Honaker RQ; Hower JC
    Waste Manag; 2016 May; 51():105-110. PubMed ID: 26951722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental impact of manganese due to its leaching from coal fly ash.
    Prasad B; Mondal KK
    J Environ Sci Eng; 2009 Jan; 51(1):27-32. PubMed ID: 21114150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites.
    Ríos CA; Williams CD; Roberts CL
    J Hazard Mater; 2008 Aug; 156(1-3):23-35. PubMed ID: 18221835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective utilization of waste ash from MSW and coal co-combustion power plant: Zeolite synthesis.
    Fan Y; Zhang FS; Zhu J; Liu Z
    J Hazard Mater; 2008 May; 153(1-2):382-8. PubMed ID: 17913357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromium speciation in coal and biomass co-combustion products.
    Stam AF; Meij R; Te Winkel H; Eijk RJ; Huggins FE; Brem G
    Environ Sci Technol; 2011 Mar; 45(6):2450-6. PubMed ID: 21344896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term evaluation of coal fly ash and mine tailings co-placement: a site-specific study.
    Yeheyis MB; Shang JQ; Yanful EK
    J Environ Manage; 2009 Oct; 91(1):237-44. PubMed ID: 19744768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility study on solidification of municipal solid waste incinerator fly ash with circulating fluidized bed combustion coal fly ash.
    Liu W; Hou H; Zhang C; Zhang D
    Waste Manag Res; 2009 May; 27(3):258-66. PubMed ID: 19423575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchrotron-based XANES speciation of chromium in the oxy-fuel fly ash collected from lab-scale drop-tube furnace.
    Jiao F; Wijaya N; Zhang L; Ninomiya Y; Hocking R
    Environ Sci Technol; 2011 Aug; 45(15):6640-6. PubMed ID: 21668013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of iron in hexavalent chromium reduction by municipal landfill leachate.
    Li Y; Low GK; Scott JA; Amal R
    J Hazard Mater; 2009 Jan; 161(2-3):657-62. PubMed ID: 18486329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of 1,4-dioxane originating from incineration residues produced by incineration of municipal solid waste.
    Fujiwara T; Tamada T; Kurata Y; Ono Y; Kose T; Ono Y; Nishimura F; Ohtoshi K
    Chemosphere; 2008 Mar; 71(5):894-901. PubMed ID: 18191439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cr(VI) concentration from batch contact/tank leaching and column percolation test using fly ash with additives.
    Chai JC; Onitsuk K; Hayashi S
    J Hazard Mater; 2009 Jul; 166(1):67-73. PubMed ID: 19097697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of leachate emissions from crushed rock and municipal solid waste incineration bottom ash used in road construction.
    Lidelöw S; Lagerkvist A
    Waste Manag; 2007; 27(10):1356-65. PubMed ID: 17005385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental impact of a coal combustion-desulphurisation plant: abatement capacity of desulphurisation process and environmental characterisation of combustion by-products.
    Alvarez-Ayuso E; Querol X; Tomás A
    Chemosphere; 2006 Dec; 65(11):2009-17. PubMed ID: 16890268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.
    Dong H; Jiang X; Lv G; Chi Y; Yan J
    Waste Manag; 2015 Dec; 46():227-33. PubMed ID: 26278370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.