These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 16121530)

  • 1. Oscillatory flow in a cone-and-plate bioreactor.
    Chung CA; Tzou MR; Ho RW
    J Biomech Eng; 2005 Aug; 127(4):601-10. PubMed ID: 16121530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid mechanics of a spinner-flask bioreactor.
    Sucosky P; Osorio DF; Brown JB; Neitzel GP
    Biotechnol Bioeng; 2004 Jan; 85(1):34-46. PubMed ID: 14705010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential effect of geometry on wall shear stress distribution across scaffold surfaces.
    Gutierrez RA; Crumpler ET
    Ann Biomed Eng; 2008 Jan; 36(1):77-85. PubMed ID: 17963042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Location of scaffolds in bioreactors modulates the hydrodynamic environment experienced by engineered tissues.
    Bilgen B; Barabino GA
    Biotechnol Bioeng; 2007 Sep; 98(1):282-94. PubMed ID: 17318906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fluid dynamics approach to bioreactor design for cell and tissue culture.
    Dusting J; Sheridan J; Hourigan K
    Biotechnol Bioeng; 2006 Aug; 94(6):1196-208. PubMed ID: 16683267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principles and design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening.
    Dobson J; Cartmell SH; Keramane A; El Haj AJ
    IEEE Trans Nanobioscience; 2006 Sep; 5(3):173-7. PubMed ID: 16999242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational fluid dynamics for improved bioreactor design and 3D culture.
    Hutmacher DW; Singh H
    Trends Biotechnol; 2008 Apr; 26(4):166-72. PubMed ID: 18261813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a modular bioreactor to incorporate both perfusion flow and hydrostatic compression for tissue engineering applications.
    Orr DE; Burg KJ
    Ann Biomed Eng; 2008 Jul; 36(7):1228-41. PubMed ID: 18438713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfabricated grooved substrates as platforms for bioartificial liver reactors.
    Park J; Berthiaume F; Toner M; Yarmush ML; Tilles AW
    Biotechnol Bioeng; 2005 Jun; 90(5):632-44. PubMed ID: 15834948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the lattice Boltzmann method simulation of a two-phase flow bioreactor for artificially grown cartilage cells.
    Hussein MA; Esterl S; Pörtner R; Wiegandt K; Becker T
    J Biomech; 2008 Dec; 41(16):3455-61. PubMed ID: 19019373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow modeling in a novel non-perfusion conical bioreactor.
    Singh H; Ang ES; Lim TT; Hutmacher DW
    Biotechnol Bioeng; 2007 Aug; 97(5):1291-9. PubMed ID: 17216661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass transport and shear stress in a microchannel bioreactor: numerical simulation and dynamic similarity.
    Zeng Y; Lee TS; Yu P; Roy P; Low HT
    J Biomech Eng; 2006 Apr; 128(2):185-93. PubMed ID: 16524329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a perfusion bioreactor specific to the regeneration of vascular tissues under mechanical stresses.
    Bilodeau K; Couet F; Boccafoschi F; Mantovani D
    Artif Organs; 2005 Nov; 29(11):906-12. PubMed ID: 16266305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic flexure and laminar flow synergistically accelerate mesenchymal stem cell-mediated engineered tissue formation: Implications for engineered heart valve tissues.
    Engelmayr GC; Sales VL; Mayer JE; Sacks MS
    Biomaterials; 2006 Dec; 27(36):6083-95. PubMed ID: 16930686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of oscillatory flow disturbances and thermal characteristics inside fluidic cells due to fluid leakage and wall slip conditions.
    Khaled AR; Vafai K
    J Biomech; 2004 May; 37(5):721-9. PubMed ID: 15047001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 4-D Flow Control in Porous Scaffolds: Toward a Next Generation of Bioreactors.
    Youssef K; Jarenwattananon NN; Archer BJ; Mack J; Iruela-Arispe ML; Bouchard LS
    IEEE Trans Biomed Eng; 2017 Jan; 64(1):61-69. PubMed ID: 26955013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of a high-throughput cone-and-plate apparatus for the application of defined spatiotemporal flow to cultured cells.
    Spruell C; Baker AB
    Biotechnol Bioeng; 2013 Jun; 110(6):1782-93. PubMed ID: 23280552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low frequency oscillatory flow in a rotating curved pipe.
    Chen HJ; Zhang BZ; Su XY
    J Zhejiang Univ Sci; 2003; 4(4):407-14. PubMed ID: 12861615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electro-tensile bioreactor for 3-D culturing of cardiomyocytes. A bioreactor system that simulates the myocardium's electrical and mechanical response in vivo.
    Feng Z; Matsumoto T; Nomura Y; Nakamura T
    IEEE Eng Med Biol Mag; 2005; 24(4):73-9. PubMed ID: 16119216
    [No Abstract]   [Full Text] [Related]  

  • 20. Application of a novel oscillatory flow micro-bioreactor to the production of gamma-decalactone in a two immiscible liquid phase medium.
    Reis N; Gonçalves CN; Aguedo M; Gomes N; Teixeira JA; Vicente AA
    Biotechnol Lett; 2006 Apr; 28(7):485-90. PubMed ID: 16614930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.