These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 16121531)

  • 1. Fluid flow structure in arterial bypass anastomosis.
    Su CM; Lee D; Tran-Son-Tay R; Shyy W
    J Biomech Eng; 2005 Aug; 127(4):611-8. PubMed ID: 16121531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational fluid dynamics simulation study of coronary blood flow affected by graft placement†.
    Lassaline JV; Moon BC
    Interact Cardiovasc Thorac Surg; 2014 Jul; 19(1):16-20. PubMed ID: 24760796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses.
    Chen J; Lu XY; Wang W
    J Biomech; 2006; 39(11):1983-95. PubMed ID: 16055134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsteady simulation of distal blood flow in an end-to-side anastomosed coronary bypass graft with stenosis.
    Najarian S; Dargahi J; Firouzi F; Afsari J
    Biomed Mater Eng; 2006; 16(5):337-47. PubMed ID: 17075169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haemodynamic analysis of coronary artery bypass grafting in a non-linear deformable artery and Newtonian pulsatile blood flow.
    Kouhi E; Morsi YS; Masood SH
    Proc Inst Mech Eng H; 2008 Nov; 222(8):1273-87. PubMed ID: 19143420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of top end anastomosis design on patency and flow stability in coronary artery bypass grafting.
    Koyama S; Kitamura T; Itatani K; Yamamoto T; Miyazaki S; Oka N; Nakashima K; Horai T; Ono M; Miyaji K
    Heart Vessels; 2016 May; 31(5):643-8. PubMed ID: 25910614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractional flow reserve-guided coronary artery bypass grafting: can intraoperative physiologic imaging guide decision making?
    Ferguson TB; Chen C; Babb JD; Efird JT; Daggubati R; Cahill JM
    J Thorac Cardiovasc Surg; 2013 Oct; 146(4):824-835.e1. PubMed ID: 23915918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational fluid dynamic study of multiple sequential coronary artery bypass anastomoses in a native coronary stenosis model.
    Matsuura K; Jin WW; Liu H; Matsumiya G
    Coron Artery Dis; 2020 Aug; 31(5):458-463. PubMed ID: 32271246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheological effects of blood in a nonplanar distal end-to-side anastomosis.
    Wang QQ; Ping BH; Xu QB; Wang W
    J Biomech Eng; 2008 Oct; 130(5):051009. PubMed ID: 19045516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational fluid-structure interaction analysis of coronary Y-grafts.
    Guerciotti B; Vergara C; Ippolito S; Quarteroni A; Antona C; Scrofani R
    Med Eng Phys; 2017 Sep; 47():117-127. PubMed ID: 28734873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal bypass graft design for left anterior descending and diagonal territory in multivessel coronary disease.
    Koyama S; Itatani K; Yamamoto T; Miyazaki S; Kitamura T; Taketani T; Ono M; Miyaji K
    Interact Cardiovasc Thorac Surg; 2014 Sep; 19(3):406-13. PubMed ID: 24893870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional numerical simulations of flow through a stenosed coronary bypass.
    Bertolotti C; Deplano V
    J Biomech; 2000 Aug; 33(8):1011-22. PubMed ID: 10828332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamic and structural effects on bypass graft for different levels of stenosis using fluid structure interaction: A prospective analysis.
    Arefin MS
    J Vasc Nurs; 2019 Sep; 37(3):169-187. PubMed ID: 31727309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical analysis of blood flow through a stenosed artery using a coupled, multiscale simulation method.
    Shim EB; Kamm RD; Heldt T; Mark RG
    Comput Cardiol; 2000; 27():219-22. PubMed ID: 12085933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study on the pulsatile flow characteristics of proximal anastomotic models.
    Chua LP; Zhang JM; Yu SC; Ghista DN; Tan YS
    Proc Inst Mech Eng H; 2005 Sep; 219(5):361-79. PubMed ID: 16225153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved DPIV investigation of pulsatile flow in symmetric stenotic arteries--effects of phase angle.
    Karri S; Vlachos PP
    J Biomech Eng; 2010 Mar; 132(3):031010. PubMed ID: 20459198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational investigations of a new prosthetic femoral-popliteal bypass graft design.
    O'Brien TP; Grace P; Walsh M; Burke P; McGloughlin T
    J Vasc Surg; 2005 Dec; 42(6):1169-75. PubMed ID: 16376210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation study of the fluid dynamics of aorto-coronary bypass.
    Pietrabissa R; Inzoli F; Fumero R
    J Biomed Eng; 1990 Sep; 12(5):419-24. PubMed ID: 2214731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of curvature wall on the blood flow in stenosed artery: A computational study.
    Ahamad NA; Kamangar S; Badruddin IA
    Biomed Mater Eng; 2018; 29(3):319-332. PubMed ID: 29578467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.