These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16121538)

  • 1. Dynamic motion planning for the design of robotic gait rehabilitation.
    Wang CY; Bobrow JE; Reinkensmeyer DJ
    J Biomech Eng; 2005 Aug; 127(4):672-9. PubMed ID: 16121538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Development of a robotic walking simulator for gait rehabilitation].
    Schmidt H; Sorowka D; Hesse S; Bernhardt R
    Biomed Tech (Berl); 2003 Oct; 48(10):281-6. PubMed ID: 14606269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation.
    Bharadwaj K; Sugar TG; Koeneman JB; Koeneman EJ
    J Biomech Eng; 2005 Nov; 127(6):1009-13. PubMed ID: 16438241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury.
    Aoyagi D; Ichinose WE; Harkema SJ; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):387-400. PubMed ID: 17894271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of dynamic entrainment with ankle mechanical perturbation to treat locomotor deficit.
    Ahn J; Hogan N
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3422-5. PubMed ID: 21097251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Path control: a method for patient-cooperative robot-aided gait rehabilitation.
    Duschau-Wicke A; von Zitzewitz J; Caprez A; Lunenburger L; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2010 Feb; 18(1):38-48. PubMed ID: 20194054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An arm for a leg: Adapting a robotic arm for gait rehabilitation.
    Franchi G; Viereck U; Platt R; Yen SC; Hasson CJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3929-32. PubMed ID: 26737153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive impedance control of a robotic orthosis for gait rehabilitation.
    Hussain S; Xie SQ; Jamwal PK
    IEEE Trans Cybern; 2013 Jun; 43(3):1025-34. PubMed ID: 23193241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation.
    Veneman JF; Kruidhof R; Hekman EE; Ekkelenkamp R; Van Asseldonk EH; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):379-86. PubMed ID: 17894270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer control of a powered two degree freedom reciprocating gait orthosis.
    Nouri BM; Zaidan A
    ISA Trans; 2006 Apr; 45(2):249-58. PubMed ID: 16649569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait-Event-Based Synchronization Method for Gait Rehabilitation Robots via a Bioinspired Adaptive Oscillator.
    Chen G; Qi P; Guo Z; Yu H
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1345-1356. PubMed ID: 28113222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Optimization of FES and Orthosis-Based Walking Using Simple Models.
    Sharma N; Mushahwar V; Stein R
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):114-26. PubMed ID: 24122568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patient-cooperative strategies for robot-aided treadmill training: first experimental results.
    Riener R; Lünenburger L; Jezernik S; Anderschitz M; Colombo G; Dietz V
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):380-94. PubMed ID: 16200761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury.
    Emken JL; Harkema SJ; Beres-Jones JA; Ferreira CK; Reinkensmeyer DJ
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):322-34. PubMed ID: 18232376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot.
    van der Kooij H; Veneman J; Ekkelenkamp R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():189-93. PubMed ID: 17946801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton.
    Agrawal SK; Banala SK; Fattah A; Sangwan V; Krishnamoorthy V; Scholz JP; Hsu WL
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):410-20. PubMed ID: 17894273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and simulation of a pneumatic, stored-energy, hybrid orthosis for gait restoration.
    Durfee WK; Rivard A
    J Biomech Eng; 2005 Nov; 127(6):1014-9. PubMed ID: 16438242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation parameter optimization for functional electrical stimulation assisted gait in human spinal cord injury using response surface methodology.
    Kim Y; Schmit BD; Youm Y
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):485-94. PubMed ID: 16488061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and implementation of robust controllers for a gait trainer.
    Wang FC; Yu CH; Chou TY
    Proc Inst Mech Eng H; 2009 Aug; 223(6):687-96. PubMed ID: 19743635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait deviations associated with post-stroke hemiparesis: improvement during treadmill walking using weight support, speed, support stiffness, and handrail hold.
    Chen G; Patten C; Kothari DH; Zajac FE
    Gait Posture; 2005 Aug; 22(1):57-62. PubMed ID: 15996593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.