BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 16121796)

  • 1. Use of laser-induced ionization to detect soot inception in premixed flames.
    Manzello SL; Lee EJ; Mulholland GW
    Appl Opt; 2005 Aug; 44(24):5105-11. PubMed ID: 16121796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of renewable diesel particulate matter gathered from non-premixed and partially premixed flame burners and from a diesel engine.
    Cadrazco M; Santamaría A; Jaramillo IC; Kaur K; Kelly KE; Agudelo JR
    Combust Flame; 2020 Apr; 214():65-79. PubMed ID: 32189720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames.
    Meyer TR; Roy S; Belovich VM; Corporan E; Gord JR
    Appl Opt; 2005 Jan; 44(3):445-54. PubMed ID: 15717834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A small porous-plug burner for studies of combustion chemistry and soot formation.
    Campbell MF; Schrader PE; Catalano AL; Johansson KO; Bohlin GA; Richards-Henderson NK; Kliewer CJ; Michelsen HA
    Rev Sci Instrum; 2017 Dec; 88(12):125106. PubMed ID: 29289223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames.
    Grotheer HH; Pokorny H; Barth KL; Thierley M; Aigner M
    Chemosphere; 2004 Dec; 57(10):1335-42. PubMed ID: 15519378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and characterization of a linear Hencken-type burner.
    Campbell MF; Bohlin GA; Schrader PE; Bambha RP; Kliewer CJ; Johansson KO; Michelsen HA
    Rev Sci Instrum; 2016 Nov; 87(11):115114. PubMed ID: 27910522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence.
    Ni T; Pinson JA; Gupta S; Santoro RJ
    Appl Opt; 1995 Oct; 34(30):7083-91. PubMed ID: 21060570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flame experiments at the advanced light source: new insights into soot formation processes.
    Hansen N; Skeen SA; Michelsen HA; Wilson KR; Kohse-Höinghaus K
    J Vis Exp; 2014 May; (87):. PubMed ID: 24894694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Burst Imaging of Dual Species Using Planar Laser-Induced Fluorescence at 50 kHz in Turbulent Premixed Flames.
    Li Z; Rosell J; Aldén M; Richter M
    Appl Spectrosc; 2017 Jun; 71(6):1363-1367. PubMed ID: 27864444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UV-visible spectroscopy of organic carbon particulate sampled from ethylene/air flames.
    Sgro LA; Minutolo P; Basile G; D'Alessio A
    Chemosphere; 2001; 42(5-7):671-80. PubMed ID: 11219693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman spectroscopy, mobility size and radiative emissions data for soot formed at increasing temperature and equivalence ratio in flames hotter than conventional combustion applications.
    Dasappa S; Camacho J
    Data Brief; 2021 Jun; 36():107064. PubMed ID: 34026968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames.
    Kulatilaka WD; Patterson BD; Frank JH; Settersten TB
    Appl Opt; 2008 Sep; 47(26):4672-83. PubMed ID: 18784770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and Laminar Flame Speed of an Ammonia/Methane/Air Premixed Flame under Varying Pressure and Equivalence Ratio.
    Rocha RC; Zhong S; Xu L; Bai XS; Costa M; Cai X; Kim H; Brackmann C; Li Z; Aldén M
    Energy Fuels; 2021 May; 35(9):7179-7192. PubMed ID: 34054210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular content of nascent soot: Family characterization using two-step laser desorption laser ionization mass spectrometry.
    Sabbah H; Commodo M; Picca F; De Falco G; Minutolo P; D'Anna A; Joblin C
    Proc Combust Inst; 2021; 38(1):1241-1248. PubMed ID: 33850480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization spectroscopy applied to the detection of trace constituents in sooting combustion.
    Walewski JW; Nyholm K; Dreizler A; Aldén M
    Appl Spectrosc; 2004 Feb; 58(2):238-42. PubMed ID: 17140484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of nanoparticles in flames; measurement by particle mass spectrometry and numerical simulation.
    Paur HR; Baumann W; Mätzing H; Seifert H
    Nanotechnology; 2005 Jul; 16(7):S354-61. PubMed ID: 21727452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femtosecond laser-induced plasma spectroscopy for combustion diagnostics in premixed ammonia/air flames.
    Zhang D; Gao Q; Li B; Liu J; Tian Y; Li Z
    Appl Opt; 2019 Oct; 58(28):7810-7816. PubMed ID: 31674464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of FRAME for Simultaneous LIF and LII Imaging in Sooting Flames Using a Single Camera.
    Mishra YN; Boggavarapu P; Chorey D; Zigan L; Will S; Deshmukh D; Rayavarapu R
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser-induced incandescence for soot particle size measurements in premixed flat flames.
    Axelsson B; Collin R; Bengtsson PE
    Appl Opt; 2000 Jul; 39(21):3683-90. PubMed ID: 18349943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The application of separated flames in analytical flame spectroscopy.
    Kirkbright GF; West TS
    Appl Opt; 1968 Jul; 7(7):1305-11. PubMed ID: 20068791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.