BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 16122327)

  • 1. Boson peak in supercooled liquids: time domain observations and mode coupling theory.
    Cang H; Li J; Andersen HC; Fayer MD
    J Chem Phys; 2005 Aug; 123(6):64508. PubMed ID: 16122327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics in supercooled ionic organic liquids and mode coupling theory analysis.
    Li J; Wang I; Fruchey K; Fayer MD
    J Phys Chem A; 2006 Sep; 110(35):10384-91. PubMed ID: 16942043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mode coupling theory description of the short- and long-time dynamics of nematogens in the isotropic phase.
    Li J; Cang H; Andersen HC; Fayer MD
    J Chem Phys; 2006 Jan; 124(1):14902. PubMed ID: 16409058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of a discotic liquid crystal in the isotropic phase.
    Li J; Fruchey K; Fayer MD
    J Chem Phys; 2006 Nov; 125(19):194901. PubMed ID: 17129161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depolarized light scattering versus optical Kerr effect spectroscopy of supercooled liquids: comparative analysis.
    Brodin A; Rössler EA
    J Chem Phys; 2006 Sep; 125(11):114502. PubMed ID: 16999485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depolarized light scattering versus optical Kerr effect. II. Insight into the dynamic susceptibility of molecular liquids.
    Brodin A; Rössler EA
    J Chem Phys; 2007 Jun; 126(24):244508. PubMed ID: 17614565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermolecular vibrations and fast relaxations in supercooled ionic liquids.
    Ribeiro MC
    J Chem Phys; 2011 Jun; 134(24):244507. PubMed ID: 21721643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moderately and strongly supercooled liquids: a temperature-derivative study of the primary relaxation time scale.
    Kokshenev VB; Borges PD; Sullivan NS
    J Chem Phys; 2005 Mar; 122(11):114510. PubMed ID: 15836232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast dynamics in complex fluids observed through the ultrafast optically-heterodyne-detected optical-Kerr-effect (OHD-OKE).
    Hunt NT; Jaye AA; Meech SR
    Phys Chem Chem Phys; 2007 Jun; 9(18):2167-80. PubMed ID: 17487314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of temperature dependent orientational relaxation in a model thermotropic liquid crystal and in a model supercooled liquid.
    Chakrabarti D; Bagchi B
    J Chem Phys; 2007 May; 126(20):204906. PubMed ID: 17552799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room temperature ionic liquid-lithium salt mixtures: optical Kerr effect dynamical measurements.
    Nicolau BG; Sturlaugson A; Fruchey K; Ribeiro MC; Fayer MD
    J Phys Chem B; 2010 Jul; 114(25):8350-6. PubMed ID: 20527943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved optical Kerr-effect investigation on CS2/polystyrene mixtures.
    Heisler IA; Correia RR; Buckup T; Cunha SL; da Silveira NP
    J Chem Phys; 2005 Aug; 123(5):054509. PubMed ID: 16108671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical Slowing of Density Fluctuations Approaching the Isotropic-Nematic Transition in Liquid Crystals: 2D IR Measurements and Mode Coupling Theory.
    Sokolowsky KP; Bailey HE; Hoffman DJ; Andersen HC; Fayer MD
    J Phys Chem B; 2016 Jul; 120(28):7003-15. PubMed ID: 27363680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental observation of a nearly logarithmic decay of the orientational correlation function in supercooled liquids on the picosecond-to-nanosecond time scales.
    Cang H; Novikov VN; Fayer MD
    Phys Rev Lett; 2003 May; 90(19):197401. PubMed ID: 12785982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Kerr effect of liquid and supercooled water: the experimental and data analysis perspective.
    Taschin A; Bartolini P; Eramo R; Righini R; Torre R
    J Chem Phys; 2014 Aug; 141(8):084507. PubMed ID: 25173021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR study of liquid to solid transition in a glass forming metallic system.
    Li L; Wu Y
    J Chem Phys; 2008 Feb; 128(5):052307. PubMed ID: 18266424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Static and dynamic properties of supercooled thin polymer films.
    Varnik F; Baschnagel J; Binder K
    Eur Phys J E Soft Matter; 2002 May; 8(2):175-92. PubMed ID: 15010967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal and non-universal features of the dynamic susceptibility of supercooled liquids.
    Brodin A; Rössler EA
    J Phys Condens Matter; 2006 Sep; 18(37):8481-92. PubMed ID: 21690902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glassiness of thermotropic liquid crystals across the isotropic-nematic transition.
    Chakrabarti D; Bagchi B
    J Phys Chem B; 2007 Oct; 111(40):11646-57. PubMed ID: 17880203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristic temperatures of glassy behaviour in a simple liquid.
    Singh SP; Das SP
    J Phys Condens Matter; 2007 Jun; 19(24):246107. PubMed ID: 21694043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.