These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16123019)

  • 1. Microdamage in porcine alveolar bone due to functional and orthodontic loading.
    Verna C; Dalstra M; Lee TC; Melsen B
    Eur J Morphol; 2005; 42(1-2):3-11. PubMed ID: 16123019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microcracks in the alveolar bone following orthodontic tooth movement: a morphological and morphometric study.
    Verna C; Dalstra M; Lee TC; Cattaneo PM; Melsen B
    Eur J Orthod; 2004 Oct; 26(5):459-67. PubMed ID: 15536833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microdamage in the alveolar process of rat maxillae after orthodontic tooth movement.
    Präger TM; Meyer P; Radlanski R; Jost-Brinkmann PG; Müller-Hartwich R
    J Orofac Orthop; 2015 Jan; 76(1):41-50. PubMed ID: 25420943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrast-enhanced micro-computed tomography of fatigue microdamage accumulation in human cortical bone.
    Landrigan MD; Li J; Turnbull TL; Burr DB; Niebur GL; Roeder RK
    Bone; 2011 Mar; 48(3):443-50. PubMed ID: 20951850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracortical remodeling in adult rat long bones after fatigue loading.
    Bentolila V; Boyce TM; Fyhrie DP; Drumb R; Skerry TM; Schaffler MB
    Bone; 1998 Sep; 23(3):275-81. PubMed ID: 9737350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The behaviour of microcracks in compact bone.
    O'brien FJ; Hardiman DA; Hazenberg JG; Mercy MV; Mohsin S; Taylor D; Lee TC
    Eur J Morphol; 2005; 42(1-2):71-9. PubMed ID: 16123026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal Distribution of Linear Microcracks and Diffuse Microdamage Following Daily Bouts of Fatigue Loading of Rat Ulnae.
    Liu X; Tang C; Zhang X; Cai J; Yan Z; Xie K; Yang Z; Wang J; Guo XE; Luo E; Jing D
    J Orthop Res; 2019 Oct; 37(10):2112-2121. PubMed ID: 31206769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal characterization of microdamage accumulation in rat ulnae in response to uniaxial compressive fatigue loading.
    Zhang X; Liu X; Yan Z; Cai J; Kang F; Shan S; Wang P; Zhai M; Edward Guo X; Luo E; Jing D
    Bone; 2018 Mar; 108():156-164. PubMed ID: 29331298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional confocal images of microdamage in cancellous bone.
    Fazzalari NL; Forwood MR; Manthey BA; Smith K; Kolesik P
    Bone; 1998 Oct; 23(4):373-8. PubMed ID: 9763150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microdamage in bone: implications for fracture, repair, remodeling, and adaptation.
    Donahue SW; Galley SA
    Crit Rev Biomed Eng; 2006; 34(3):215-71. PubMed ID: 16930125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axial-shear interaction effects on microdamage in bovine tibial trabecular bone.
    Wang X; Guyette J; Liu X; Roeder RK; Niebur GL
    Eur J Morphol; 2005; 42(1-2):61-70. PubMed ID: 16123025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microdamage detection and repair in bone: fracture mechanics, histology, cell biology.
    Hazenberg JG; Hentunen TA; Heino TJ; Kurata K; Lee TC; Taylor D
    Technol Health Care; 2009; 17(1):67-75. PubMed ID: 19478407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer simulation of orthodontic tooth movement using CT image-based voxel finite element models with the level set method.
    Hasegawa M; Adachi T; Takano-Yamamoto T
    Comput Methods Biomech Biomed Engin; 2016; 19(5):474-83. PubMed ID: 26218656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of damage morphology on cortical bone fragility.
    Diab T; Vashishth D
    Bone; 2005 Jul; 37(1):96-102. PubMed ID: 15897021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue reaction to orthodontic tooth movement in acute and chronic corticosteroid treatment.
    Kalia S; Melsen B; Verna C
    Orthod Craniofac Res; 2004 Feb; 7(1):26-34. PubMed ID: 14989752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microdamage in cortical bone due to the overtightening of orthodontic microscrews.
    Wawrzinek C; Sommer T; Fischer-Brandies H
    J Orofac Orthop; 2008 Mar; 69(2):121-34. PubMed ID: 18385958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone adaptation to load: microdamage as a stimulus for bone remodelling.
    Lee TC; Staines A; Taylor D
    J Anat; 2002 Dec; 201(6):437-46. PubMed ID: 12489756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting trabecular bone microdamage initiation and accumulation using a non-linear perfect damage model.
    Kosmopoulos V; Keller TS
    Med Eng Phys; 2008 Jul; 30(6):725-32. PubMed ID: 17881275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional morphology of microdamage in peri-screw bone: a scanning electron microscopy of methylmethacrylate cast replica.
    Wang L; Shao J; Ye T; Deng L; Qiu S
    Microsc Microanal; 2012 Oct; 18(5):1106-11. PubMed ID: 23046724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Bone fracture and the healing mechanisms. Microdamage and Microfracture].
    Mori S
    Clin Calcium; 2009 May; 19(5):699-703. PubMed ID: 19398838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.