BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 16123029)

  • 1. Perforation of cancellous bone trabeculae by damage-stimulated remodelling at resorption pits: a computational analysis.
    McNamara LM; Prendergast PJ
    Eur J Morphol; 2005; 42(1-2):99-109. PubMed ID: 16123029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of vertebral trabecular bone loss using voxel finite element analysis.
    Mc Donnell P; Harrison N; Liebschner MA; Mc Hugh PE
    J Biomech; 2009 Dec; 42(16):2789-96. PubMed ID: 19782987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanobiological regulation of the remodelling cycle in trabecular bone and possible biomechanical pathways for osteoporosis.
    Mulvihill BM; Prendergast PJ
    Clin Biomech (Bristol, Avon); 2010 Jun; 25(5):491-8. PubMed ID: 20193973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A stochastic analysis of iliac trabecular bone dynamics.
    Reeve J
    Clin Orthop Relat Res; 1986 Dec; (213):264-78. PubMed ID: 3780102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis.
    Seeman E
    Osteoporos Int; 2003; 14 Suppl 3():S2-8. PubMed ID: 12730770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microdamage and bone mechanobiology.
    Lee TC; O'Brien FJ; Gunnlaugsson T; Parkesh R; Taylor D
    Technol Health Care; 2006; 14(4-5):359-65. PubMed ID: 17065757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone.
    Yeh OC; Keaveny TM
    J Orthop Res; 2001 Nov; 19(6):1001-7. PubMed ID: 11780997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of trabeculae by mechano-biological means may explain rapid bone loss in osteoporosis.
    Mulvihill BM; McNamara LM; Prendergast PJ
    J R Soc Interface; 2008 Oct; 5(27):1243-53. PubMed ID: 18348960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the role of osteocytes in the initiation of targeted remodeling.
    Heino TJ; Kurata K; Higaki H; Väänänen HK
    Technol Health Care; 2009; 17(1):49-56. PubMed ID: 19478405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Damage in trabecular bone at small strains.
    Morgan EF; Yeh OC; Keaveny TM
    Eur J Morphol; 2005; 42(1-2):13-21. PubMed ID: 16123020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical consequences of bone loss in cancellous bone.
    van der Linden JC; Homminga J; Verhaar JA; Weinans H
    J Bone Miner Res; 2001 Mar; 16(3):457-65. PubMed ID: 11277263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A theoretical analysis of long-term bisphosphonate effects on trabecular bone volume and microdamage.
    Nyman JS; Yeh OC; Hazelwood SJ; Martin RB
    Bone; 2004 Jul; 35(1):296-305. PubMed ID: 15207770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic.
    Shefelbine SJ; Augat P; Claes L; Simon U
    J Biomech; 2005 Dec; 38(12):2440-50. PubMed ID: 16214492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical framework for strain-related trabecular bone maintenance and adaptation.
    Ruimerman R; Hilbers P; van Rietbergen B; Huiskes R
    J Biomech; 2005 Apr; 38(4):931-41. PubMed ID: 15713314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An algorithm for bone mechanoresponsiveness: implementation to study the effect of patient-specific cell mechanosensitivity on trabecular bone loss.
    Mulvihill BM; Prendergast PJ
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):443-51. PubMed ID: 18608340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method.
    Tomar V
    J Biomech Eng; 2008 Apr; 130(2):021021. PubMed ID: 18412508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhomogeneity of tissue-level strain distributions in individual trabeculae: mathematical model studies of normal and osteoporosis cases.
    Gefen A; Portnoy S; Diamant I
    Med Eng Phys; 2008 Jun; 30(5):624-30. PubMed ID: 17697794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The behaviour of microcracks in compact bone.
    O'brien FJ; Hardiman DA; Hazenberg JG; Mercy MV; Mohsin S; Taylor D; Lee TC
    Eur J Morphol; 2005; 42(1-2):71-9. PubMed ID: 16123026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Osteoclastic resorption of trabeculae in osteoporotic femoral head: a scanning electron microscopic study].
    Chai BF; Tang XM; Zhou WR
    Zhonghua Wai Ke Za Zhi; 1994 Oct; 32(10):621-5. PubMed ID: 7750424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical osteoporosis models using composite finite elements: a parameter study.
    Wolfram U; Schwen LO; Simon U; Rumpf M; Wilke HJ
    J Biomech; 2009 Sep; 42(13):2205-9. PubMed ID: 19643420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.