BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 16123184)

  • 1. Interlaboratory comparison of ultrasonic backscatter coefficient measurements from 2 to 9 MHz.
    Wear KA; Stiles TA; Frank GR; Madsen EL; Cheng F; Feleppa EJ; Hall CS; Kim BS; Lee P; O'Brien WD; Oelze ML; Raju BI; Shung KK; Wilson TA; Yuan JR
    J Ultrasound Med; 2005 Sep; 24(9):1235-50. PubMed ID: 16123184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interlaboratory comparison of ultrasonic backscatter, attenuation, and speed measurements.
    Madsen EL; Dong F; Frank GR; Garra BS; Wear KA; Wilson T; Zagzebski JA; Miller HL; Shung KK; Wang SH; Feleppa EJ; Liu T; O'Brien WD; Topp KA; Sanghvi NT; Zaitsev AV; Hall TJ; Fowlkes JB; Kripfgans OD; Miller JG
    J Ultrasound Med; 1999 Sep; 18(9):615-31. PubMed ID: 10478971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlaboratory comparison of backscatter coefficient estimates for tissue-mimicking phantoms.
    Anderson JJ; Herd MT; King MR; Haak A; Hafez ZT; Song J; Oelze ML; Madsen EL; Zagzebski JA; O'Brien WD; Hall TJ
    Ultrason Imaging; 2010 Jan; 32(1):48-64. PubMed ID: 20690431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
    Brewin MP; Pike LC; Rowland DE; Birch MJ
    Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a Tissue-Mimicking Phantom of the Brain for Ultrasonic Studies.
    Taghizadeh S; Labuda C; Mobley J
    Ultrasound Med Biol; 2018 Dec; 44(12):2813-2820. PubMed ID: 30274683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound assessment of the conversion of sound energy into heat in tissue phantoms enriched with magnetic micro- and nanoparticles.
    Gambin B; Kruglenko E; Tymkiewicz R; Litniewski J
    Med Phys; 2019 Oct; 46(10):4361-4370. PubMed ID: 31359439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic Characterization of Human Scalp.
    Labuda C; Lawler BC; Hoffmeister BK; Harbert SC; Viano AM; Myat PSM
    Ultrasound Med Biol; 2023 Dec; 49(12):2489-2496. PubMed ID: 37716831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-frequency backscatter and attenuation measurements of selected bovine tissues between 10 and 30 MHz.
    Maruvada S; Shung KK; Wang SH
    Ultrasound Med Biol; 2000 Jul; 26(6):1043-9. PubMed ID: 10996704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-frequency ultrasonic attenuation and backscatter coefficients of in vivo normal human dermis and subcutaneous fat.
    Raju BI; Srinivasan MA
    Ultrasound Med Biol; 2001 Nov; 27(11):1543-56. PubMed ID: 11750754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-imaging system comparison of backscatter coefficient estimates from a tissue-mimicking material.
    Nam K; Rosado-Mendez IM; Wirtzfeld LA; Kumar V; Madsen EL; Ghoshal G; Pawlicki AD; Oelze ML; Lavarello RJ; Bigelow TA; Zagzebski JA; O'Brien WD; Hall TJ
    J Acoust Soc Am; 2012 Sep; 132(3):1319-24. PubMed ID: 22978860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic backscatter coefficients for weakly scattering, agar spheres in agar phantoms.
    King MR; Anderson JJ; Herd MT; Ma D; Haak A; Wirtzfeld LA; Madsen EL; Zagzebski JA; Oelze ML; Hall TJ; O'Brien WD
    J Acoust Soc Am; 2010 Aug; 128(2):903-8. PubMed ID: 20707460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency dependence of ultrasonic backscatter from human trabecular bone: theory and experiment.
    Wear KA
    J Acoust Soc Am; 1999 Dec; 106(6):3659-64. PubMed ID: 10615704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High frequency ultrasonic backscatter from erythrocyte suspension.
    Kuo IY; Shung KK
    IEEE Trans Biomed Eng; 1994 Jan; 41(1):29-34. PubMed ID: 8200665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the precision of spectral backscatter measurements on the estimation of scatterers size in cancellous bone.
    Padilla F; Jenson F; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e57-60. PubMed ID: 16904147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a polymer, open-cell rigid foam that simulates the ultrasonic properties of cancellous bone.
    Hoffmeister BK; Huber MT; Viano AM; Huang J
    J Acoust Soc Am; 2018 Feb; 143(2):911. PubMed ID: 29495707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-frequency backscatter and attenuation measurements of porcine erythrocyte suspensions between 30-90 MHz.
    Maruvada S; Shung KK; Wang SH
    Ultrasound Med Biol; 2002 Aug; 28(8):1081-8. PubMed ID: 12217444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A proposed microscopic elastic wave theory for ultrasonic backscatter from myocardial tissue.
    Rose JH; Kaufmann MR; Wickline SA; Hall CS; Miller JG
    J Acoust Soc Am; 1995 Jan; 97(1):656-68. PubMed ID: 7860840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic attenuation and backscatter from flowing whole blood are dependent on shear rate and hematocrit between 10 and 50 MHz.
    Huang CC; Chang YC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):357-68. PubMed ID: 21342821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamental precision limitations for measurements of frequency dependence of backscatter: applications in tissue-mimicking phantoms and trabecular bone.
    Wear KA
    J Acoust Soc Am; 2001 Dec; 110(6):3275-82. PubMed ID: 11785828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical and phantom based investigation of the impact of sound speed and backscatter variations on attenuation slope estimation.
    Omari E; Lee H; Varghese T
    Ultrasonics; 2011 Aug; 51(6):758-67. PubMed ID: 21477832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.