These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 16123452)

  • 21. Cone and rod ERG phototransduction parameters in retinitis pigmentosa.
    Tzekov RT; Locke KG; Hood DC; Birch DG
    Invest Ophthalmol Vis Sci; 2003 Sep; 44(9):3993-4000. PubMed ID: 12939320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of aging and age-related maculopathy on activation of the a-wave of the rod-mediated electroretinogram.
    Jackson GR; McGwin G; Phillips JM; Klein R; Owsley C
    Invest Ophthalmol Vis Sci; 2004 Sep; 45(9):3271-8. PubMed ID: 15326151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the rhodopsin knockout mouse as a model of pure cone function.
    Jaissle GB; May CA; Reinhard J; Kohler K; Fauser S; Lütjen-Drecoll E; Zrenner E; Seeliger MW
    Invest Ophthalmol Vis Sci; 2001 Feb; 42(2):506-13. PubMed ID: 11157890
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contribution of proximal retinal neurons to b- and d-waves of frog electroretinogram under different conditions of light adaptation.
    Popova E; Kupenova P
    Vision Res; 2009 Jul; 49(15):2001-10. PubMed ID: 19463849
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mouse cone photoresponses obtained with electroretinogram from the isolated retina.
    Heikkinen H; Nymark S; Koskelainen A
    Vision Res; 2008 Jan; 48(2):264-72. PubMed ID: 18166210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rod- and cone-isolated flicker electroretinograms and their response summation characteristics.
    McAnany JJ; Park JC; Cao D
    Vis Neurosci; 2015 Jan; 32():E018. PubMed ID: 26241372
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cone ERG responses in patients with Smith-Lemli-Opitz Syndrome (SLOS).
    Garry D; Hansen RM; Moskowitz A; Elias ER; Irons M; Fulton AB
    Doc Ophthalmol; 2010 Oct; 121(2):85-91. PubMed ID: 20440536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for photoreceptor changes in patients with diabetic retinopathy.
    Holopigian K; Greenstein VC; Seiple W; Hood DC; Carr RE
    Invest Ophthalmol Vis Sci; 1997 Oct; 38(11):2355-65. PubMed ID: 9344359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cone-dominated ERG luminance-response function: the Photopic Hill revisited.
    Rufiange M; Rousseau S; Dembinska O; Lachapelle P
    Doc Ophthalmol; 2002 May; 104(3):231-48. PubMed ID: 12076014
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Retinal rod photoreceptor-specific gene mutation perturbs cone pathway development.
    Banin E; Cideciyan AV; Alemán TS; Petters RM; Wong F; Milam AH; Jacobson SG
    Neuron; 1999 Jul; 23(3):549-57. PubMed ID: 10433266
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purinergic modulation of frog electroretinographic responses: The role of the ionotropic receptor P2X7.
    Kupenova P; Popova E; Vitanova L
    Vis Neurosci; 2017 Jan; 34():E015. PubMed ID: 28965497
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contribution of rod and cone pathways to the dark-adapted electroretinogram (ERG) b-wave following retinal degeneration in RCS rats.
    Pinilla I; Lund RD; Sauvé Y
    Vision Res; 2004; 44(21):2467-74. PubMed ID: 15358082
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The sensitivity and spectral identity of the cones driving the b-wave of the rat electroretinogram.
    Akula JD; Lyubarsky AL; Naarendorp F
    Vis Neurosci; 2003; 20(2):109-17. PubMed ID: 12916733
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The development of the rod photoresponse from dark-adapted rats.
    Fulton AB; Hansen RM; Findl O
    Invest Ophthalmol Vis Sci; 1995 May; 36(6):1038-45. PubMed ID: 7730013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in rod and cone-driven oscillatory potentials in the aging human retina.
    Dimopoulos IS; Freund PR; Redel T; Dornstauder B; Gilmour G; Sauvé Y
    Invest Ophthalmol Vis Sci; 2014 Jul; 55(8):5058-73. PubMed ID: 25034601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. "Cone dystrophy with supernormal rod electroretinogram": a comprehensive genotype/phenotype study including fundus autofluorescence and extensive electrophysiology.
    Robson AG; Webster AR; Michaelides M; Downes SM; Cowing JA; Hunt DM; Moore AT; Holder GE
    Retina; 2010 Jan; 30(1):51-62. PubMed ID: 19952985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Digoxin-induced reversible dysfunction of the cone photoreceptors in monkeys.
    Kinoshita J; Iwata N; Kimotsuki T; Yasuda M
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):881-92. PubMed ID: 24436189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cone dystrophy with "supernormal" rod ERG: psychophysical testing shows comparable rod and cone temporal sensitivity losses with no gain in rod function.
    Stockman A; Henning GB; Michaelides M; Moore AT; Webster AR; Cammack J; Ripamonti C
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):832-40. PubMed ID: 24370833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cone-rod dependence in the rat retina: variation with the rate of rod damage.
    Chrysostomou V; Valter K; Stone J
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):3017-23. PubMed ID: 19182251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of age on human cone and rod ganzfeld electroretinograms.
    Weleber RG
    Invest Ophthalmol Vis Sci; 1981 Mar; 20(3):392-9. PubMed ID: 7203883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.