BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 16124008)

  • 21. Effects of high-frequency alternating current on axonal conduction through the vagus nerve.
    Waataja JJ; Tweden KS; Honda CN
    J Neural Eng; 2011 Oct; 8(5):056013. PubMed ID: 21918293
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic change of proximal conduction in demyelinating neuropathies: a cervical magnetic stimulation combined with maximum voluntary contraction.
    Hitomi T; Kaji R; Murase N; Kohara N; Mezaki T; Nodera H; Kawamura T; Ikeda A; Shibasaki H
    Clin Neurophysiol; 2007 Apr; 118(4):741-50. PubMed ID: 17317300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulation of nerve block by high-frequency sinusoidal electrical current based on the Hodgkin-Huxley model.
    Tai C; de Groat WC; Roppolo JR
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):415-22. PubMed ID: 16200764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Counted cycles method to quantify the onset response in high-frequency peripheral nerve block.
    Foldes EL; Ackermann D; Bhadra N; Kilgore KL
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():614-7. PubMed ID: 19963719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcutaneously coupled, high-frequency electrical stimulation of the pudendal nerve blocks external urethral sphincter contractions.
    Gaunt RA; Prochazka A
    Neurorehabil Neural Repair; 2009; 23(6):615-26. PubMed ID: 19109445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combining direct current and kilohertz frequency alternating current to mitigate onset activity during electrical nerve block.
    Eggers T; Kilgore J; Green D; Vrabec T; Kilgore K; Bhadra N
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33662942
    [No Abstract]   [Full Text] [Related]  

  • 27. Mechanism of nerve conduction block induced by high-frequency biphasic electrical currents.
    Zhang X; Roppolo JR; de Groat WC; Tai C
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2445-54. PubMed ID: 17153201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Radiation-induced conduction block: resolution following anticoagulant therapy.
    Soto O
    Muscle Nerve; 2005 May; 31(5):642-5. PubMed ID: 15635681
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pulsed laser versus electrical energy for peripheral nerve stimulation.
    Wells J; Konrad P; Kao C; Jansen ED; Mahadevan-Jansen A
    J Neurosci Methods; 2007 Jul; 163(2):326-37. PubMed ID: 17537515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A rat in vitro model for the measurement of multiple excitability properties of cutaneous axons.
    Maurer K; Bostock H; Koltzenburg M
    Clin Neurophysiol; 2007 Nov; 118(11):2404-12. PubMed ID: 17897875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of muscle-fiber velocity recovery function on motor unit action potential properties in voluntary contractions.
    Farina D; Falla D
    Muscle Nerve; 2008 May; 37(5):650-8. PubMed ID: 18085714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stimulation threshold comparison of time-varying magnetic pulses with different waveforms.
    Irnich W; Hebrank FX
    J Magn Reson Imaging; 2009 Jan; 29(1):229-36. PubMed ID: 19097100
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conduction block of peripheral nerve using high-frequency alternating currents delivered through an intrafascicular electrode.
    Ackermann DM; Foldes EL; Bhadra N; Kilgore KL
    Muscle Nerve; 2010 Jan; 41(1):117-9. PubMed ID: 19813186
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new method for the estimation of motor nerve conduction block.
    Mesin L; Cocito D
    Clin Neurophysiol; 2007 Apr; 118(4):730-40. PubMed ID: 17317295
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An experimental model of an electrical injury to the peripheral nerve.
    Fan KW; Zhu ZX; Den ZY
    Burns; 2005 Sep; 31(6):731-6. PubMed ID: 16129227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined KHFAC + DC nerve block without onset or reduced nerve conductivity after block.
    Franke M; Vrabec T; Wainright J; Bhadra N; Bhadra N; Kilgore K
    J Neural Eng; 2014 Oct; 11(5):056012. PubMed ID: 25115572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of nerve cuff electrode geometry on onset response firing in high-frequency nerve conduction block.
    Ackermann DM; Bhadra N; Foldes EL; Wang XF; Kilgore KL
    IEEE Trans Neural Syst Rehabil Eng; 2010 Dec; 18(6):658-65. PubMed ID: 20813650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Repetitive firing of a model motoneuron: inhibitory effect of a Ca2+ -activated potassium conductance on the slope of the frequency-current relationship.
    Wada K; Sakaguchi Y
    Neurosci Res; 2007 Feb; 57(2):259-67. PubMed ID: 17141906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of frequency and temperature on the mechanisms of nerve conduction block induced by high-frequency biphasic electrical current.
    Wang J; Shen B; Roppolo JR; de Groat WC; Tai C
    J Comput Neurosci; 2008 Apr; 24(2):195-206. PubMed ID: 17682929
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kilohertz waveforms optimized to produce closed-state Na+ channel inactivation eliminate onset response in nerve conduction block.
    Yi G; Grill WM
    PLoS Comput Biol; 2020 Jun; 16(6):e1007766. PubMed ID: 32542050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.