These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 16124297)
41. Atom exchange between aqueous Fe(II) and goethite: an Fe isotope tracer study. Handler RM; Beard BL; Johnson CM; Scherer MM Environ Sci Technol; 2009 Feb; 43(4):1102-7. PubMed ID: 19320165 [TBL] [Abstract][Full Text] [Related]
42. Evaluation of carbon isotope fractionation during anaerobic reductive dehalogenation of chlorinated and brominated benzenes. Sohn SY; Kuntze K; Nijenhuis I; Häggblom MM Chemosphere; 2018 Feb; 193():785-792. PubMed ID: 29175406 [TBL] [Abstract][Full Text] [Related]
43. Isotopic fractionation during reductive dechlorination of trichloroethene by zero-valent iron: influence of surface treatment. Slater GF; Lollar BS; King RA; O'Hannesin S Chemosphere; 2002 Nov; 49(6):587-96. PubMed ID: 12430646 [TBL] [Abstract][Full Text] [Related]
44. Fractionation of carbon isotopes of dissolved organic matter adsorbed to goethite in the presence of arsenic to study the origin of DOM in groundwater. Zhang Y; Gan Y; Yu K; Han L Environ Geochem Health; 2021 Mar; 43(3):1225-1238. PubMed ID: 32651930 [TBL] [Abstract][Full Text] [Related]
45. Determination of hexavalent chromium reduction using Cr stable isotopes: isotopic fractionation factors for permeable reactive barrier materials. Basu A; Johnson TM Environ Sci Technol; 2012 May; 46(10):5353-60. PubMed ID: 22424120 [TBL] [Abstract][Full Text] [Related]
46. Isotopic analysis of oxidative pollutant degradation pathways exhibiting large H isotope fractionation. Wijker RS; Adamczyk P; Bolotin J; Paneth P; Hofstetter TB Environ Sci Technol; 2013; 47(23):13459-68. PubMed ID: 24175739 [TBL] [Abstract][Full Text] [Related]
47. Carbon isotope effects associated with Fenton-like degradation of toluene: potential for differentiation of abiotic and biotic degradation. Ahad JM; Slater GF Sci Total Environ; 2008 Aug; 401(1-3):194-8. PubMed ID: 18466958 [TBL] [Abstract][Full Text] [Related]
48. Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction. Crosby HA; Johnson CM; Roden EE; Beard BL Environ Sci Technol; 2005 Sep; 39(17):6698-704. PubMed ID: 16190229 [TBL] [Abstract][Full Text] [Related]
49. Effect of iron type on kinetics and carbon isotopic enrichment of chlorinated ethylenes during abiotic reduction on Fe(0). VanStone NA; Focht RM; Mabury SA; Lollar BS Ground Water; 2004; 42(2):268-76. PubMed ID: 15035590 [TBL] [Abstract][Full Text] [Related]
50. Iron minerals enhance Fe(II)-mediated abiotic As(III) oxidation. Zhang X; Fu Q; Hu H; Zhu J; Fang L Chemosphere; 2024 Sep; 363():142913. PubMed ID: 39053775 [TBL] [Abstract][Full Text] [Related]
51. Iron Isotope Fractionation during Fe(II) Oxidation Mediated by the Oxygen-Producing Marine Cyanobacterium Synechococcus PCC 7002. Swanner ED; Bayer T; Wu W; Hao L; Obst M; Sundman A; Byrne JM; Michel FM; Kleinhanns IC; Kappler A; Schoenberg R Environ Sci Technol; 2017 May; 51(9):4897-4906. PubMed ID: 28402123 [TBL] [Abstract][Full Text] [Related]
52. Microbial dehalogenation of trichlorinated dibenzo-p-dioxins by a Dehalococcoides-containing mixed culture is coupled to carbon isotope fractionation. Ewald EM; Wagner A; Nijenhuis I; Richnow HH; Lechner U Environ Sci Technol; 2007 Nov; 41(22):7744-51. PubMed ID: 18075083 [TBL] [Abstract][Full Text] [Related]
53. Multi-element isotopic evidence for monochlorobenzene and benzene degradation under anaerobic conditions in contaminated sediments. Gilevska T; Sullivan Ojeda A; Kümmel S; Gehre M; Seger E; West K; Morgan SA; Mack EE; Sherwood Lollar B Water Res; 2021 Dec; 207():117809. PubMed ID: 34741903 [TBL] [Abstract][Full Text] [Related]
54. Integrated carbon and chlorine isotope modeling: applications to chlorinated aliphatic hydrocarbons dechlorination. Jin B; Haderlein SB; Rolle M Environ Sci Technol; 2013 Feb; 47(3):1443-51. PubMed ID: 23298341 [TBL] [Abstract][Full Text] [Related]
55. Using chromium stable isotope ratios to quantify Cr(VI) reduction: lack of sorption effects. Ellis AS; Johnson TM; Bullen TD Environ Sci Technol; 2004 Jul; 38(13):3604-7. PubMed ID: 15296311 [TBL] [Abstract][Full Text] [Related]
56. Carbon tetrachloride transformation in a model iron-reducing culture: relative kinetics of biotic and abiotic reactions. McCormick ML; Bouwer EJ; Adriaens P Environ Sci Technol; 2002 Feb; 36(3):403-10. PubMed ID: 11871555 [TBL] [Abstract][Full Text] [Related]
57. Degradation Characteristics of Carbon Tetrachloride by Granular Sponge Zero Valent Iron. Zhu X; Li Y; Han B; Feng Q; Zhou L Int J Environ Res Public Health; 2021 Nov; 18(23):. PubMed ID: 34886303 [TBL] [Abstract][Full Text] [Related]
58. Zinc Stable Isotope Fractionation Mechanisms during Adsorption on and Substitution in Iron (Hydr)oxides. Yan X; Li W; Zhu C; Peacock CL; Liu Y; Li H; Zhang J; Hong M; Liu F; Yin H Environ Sci Technol; 2023 Apr; 57(16):6636-6646. PubMed ID: 37042830 [TBL] [Abstract][Full Text] [Related]
59. Contrasted redox-dependent structural control on Fe isotope fractionation during its adsorption onto and assimilation by heterotrophic soil bacteria. González AG; Poitrasson F; Jiménez-Villacorta F; Shirokova LS; Pokrovsky OS Environ Sci Process Impacts; 2024 Feb; 26(2):344-356. PubMed ID: 38169006 [TBL] [Abstract][Full Text] [Related]
60. Stable iron isotope fractionation between aqueous Fe(II) and hydrous ferric oxide. Wu L; Beard BL; Roden EE; Johnson CM Environ Sci Technol; 2011 Mar; 45(5):1847-52. PubMed ID: 21294566 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]