These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 16124301)
41. Identification of organic hydroperoxides and hydroperoxy acids in secondary organic aerosol formed during the ozonolysis of different monoterpenes and sesquiterpenes by on-line analysis using atmospheric pressure chemical ionization ion trap mass spectrometry. Reinnig MC; Warnke J; Hoffmann T Rapid Commun Mass Spectrom; 2009 Jun; 23(11):1735-41. PubMed ID: 19412924 [TBL] [Abstract][Full Text] [Related]
43. Mass spectra deconvolution of low, medium, and high volatility biogenic secondary organic aerosol. Kostenidou E; Lee BH; Engelhart GJ; Pierce JR; Pandis SN Environ Sci Technol; 2009 Jul; 43(13):4884-9. PubMed ID: 19673280 [TBL] [Abstract][Full Text] [Related]
44. New application of direct analysis in real time high-resolution mass spectrometry for the untargeted analysis of fresh and aged secondary organic aerosols generated from monoterpenes. Schramm S; Zannoni N; Gros V; Tillmann R; Kiendler-Scharr A; Sarda-Estève R; Bridoux M Rapid Commun Mass Spectrom; 2019 May; 33 Suppl 1():50-59. PubMed ID: 29971833 [TBL] [Abstract][Full Text] [Related]
45. Seasonal characteristics of biogenic secondary organic aerosols at Mt. Wuyi in Southeastern China: Influence of anthropogenic pollutants. Ren Y; Wang G; Tao J; Zhang Z; Wu C; Wang J; Li J; Wei J; Li H; Meng F Environ Pollut; 2019 Sep; 252(Pt A):493-500. PubMed ID: 31163382 [TBL] [Abstract][Full Text] [Related]
46. The effect of sub-zero temperature on the formation and composition of secondary organic aerosol from ozonolysis of alpha-pinene. Kristensen K; Jensen LN; Glasius M; Bilde M Environ Sci Process Impacts; 2017 Oct; 19(10):1220-1234. PubMed ID: 28805852 [TBL] [Abstract][Full Text] [Related]
47. The use of polar organic compounds to estimate the contribution of domestic solid fuel combustion and biogenic sources to ambient levels of organic carbon and PM2.5 in Cork Harbour, Ireland. Kourtchev I; Hellebust S; Bell JM; O'Connor IP; Healy RM; Allanic A; Healy D; Wenger JC; Sodeau JR Sci Total Environ; 2011 May; 409(11):2143-55. PubMed ID: 21420721 [TBL] [Abstract][Full Text] [Related]
48. How salt lakes affect atmospheric new particle formation: A case study in Western Australia. Kamilli KA; Ofner J; Krause T; Sattler T; Schmitt-Kopplin P; Eitenberger E; Friedbacher G; Lendl B; Lohninger H; Schöler HF; Held A Sci Total Environ; 2016 Dec; 573():985-995. PubMed ID: 27599062 [TBL] [Abstract][Full Text] [Related]
49. Source attribution of submicron organic aerosols during wintertime inversions by advanced factor analysis of aerosol mass spectra. Lanz VA; Alfarra MR; Baltensperger U; Buchmann B; Hueglin C; Szidat S; Wehrli MN; Wacker L; Weimer S; Caseiro A; Puxbaum H; Prevot AS Environ Sci Technol; 2008 Jan; 42(1):214-20. PubMed ID: 18350899 [TBL] [Abstract][Full Text] [Related]
50. Direct evidence of atmospheric secondary organic aerosol formation in forest atmosphere through heteromolecular nucleation. Kavouras IG; Stephanou EG Environ Sci Technol; 2002 Dec; 36(23):5083-91. PubMed ID: 12523424 [TBL] [Abstract][Full Text] [Related]
51. Simulating organic aerosol formation during the photooxidation of toluene/NOx mixtures: comparing the equilibrium and kinetic assumption. Stroud CA; Makar PA; Michelangeli DV; Mozurkewich M; Hastie DR; Barbu A; Humble J Environ Sci Technol; 2004 Mar; 38(5):1471-9. PubMed ID: 15046349 [TBL] [Abstract][Full Text] [Related]
52. Use of a gas chromatography-mass spectrometry organic aerosol monitor for in-field detection of fine particulate organic compounds in source apportionment. Cropper PM; Eatough DJ; Overson DK; Hansen JC; Caka F; Cary RA J Air Waste Manag Assoc; 2018 May; 68(5):390-402. PubMed ID: 28837409 [TBL] [Abstract][Full Text] [Related]
53. Secondary organic aerosol production from terpene ozonolysis. 2. Effect of NOx concentration. Presto AA; Hartz KE; Donahue NM Environ Sci Technol; 2005 Sep; 39(18):7046-54. PubMed ID: 16201628 [TBL] [Abstract][Full Text] [Related]
54. Contributions and source identification of biogenic and anthropogenic hydrocarbons to secondary organic aerosols at Mt. Tai in 2014. Zhu Y; Yang L; Kawamura K; Chen J; Ono K; Wang X; Xue L; Wang W Environ Pollut; 2017 Jan; 220(Pt B):863-872. PubMed ID: 27823860 [TBL] [Abstract][Full Text] [Related]
55. Optical Properties of Secondary Organic Aerosol Produced by Nitrate Radical Oxidation of Biogenic Volatile Organic Compounds. He Q; Tomaz S; Li C; Zhu M; Meidan D; Riva M; Laskin A; Brown SS; George C; Wang X; Rudich Y Environ Sci Technol; 2021 Mar; 55(5):2878-2889. PubMed ID: 33596062 [TBL] [Abstract][Full Text] [Related]
56. Hydrocarbons in particulate samples from wildfire events in central Portugal in summer 2010. Vicente A; Calvo A; Fernandes AP; Nunes T; Monteiro C; Pio C; Alves C J Environ Sci (China); 2017 Mar; 53():122-131. PubMed ID: 28372736 [TBL] [Abstract][Full Text] [Related]
57. Characterization of organic compounds in aerosol particles from a coniferous forest by GC-MS. Rissanen T; Hyötyläinen T; Kallio M; Kronholm J; Kulmala M; Riekkola ML Chemosphere; 2006 Aug; 64(7):1185-95. PubMed ID: 16434076 [TBL] [Abstract][Full Text] [Related]
58. Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States. Zhang H; Yee LD; Lee BH; Curtis MP; Worton DR; Isaacman-VanWertz G; Offenberg JH; Lewandowski M; Kleindienst TE; Beaver MR; Holder AL; Lonneman WA; Docherty KS; Jaoui M; Pye HOT; Hu W; Day DA; Campuzano-Jost P; Jimenez JL; Guo H; Weber RJ; de Gouw J; Koss AR; Edgerton ES; Brune W; Mohr C; Lopez-Hilfiker FD; Lutz A; Kreisberg NM; Spielman SR; Hering SV; Wilson KR; Thornton JA; Goldstein AH Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2038-2043. PubMed ID: 29440409 [TBL] [Abstract][Full Text] [Related]
59. Chemical Characterization of Gas- and Particle-Phase Products from the Ozonolysis of α-Pinene in the Presence of Dimethylamine. Duporté G; Riva M; Parshintsev J; Heikkinen E; Barreira LMF; Myllys N; Heikkinen L; Hartonen K; Kulmala M; Ehn M; Riekkola ML Environ Sci Technol; 2017 May; 51(10):5602-5610. PubMed ID: 28422480 [TBL] [Abstract][Full Text] [Related]
60. Identification and quantification of aerosol polar oxygenated compounds bearing carboxylic or hydroxyl groups. 1. Method development. Jaoui M; Kleindienst TE; Lewandowski M; Edney EO Anal Chem; 2004 Aug; 76(16):4765-78. PubMed ID: 15307788 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]