These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 16124321)
1. Micellar catalyzed degradation of fenitrothion, an organophosphorus pesticide, in solution and soils. Balakrishnan VK; Buncel E; Vanloon GW Environ Sci Technol; 2005 Aug; 39(15):5824-30. PubMed ID: 16124321 [TBL] [Abstract][Full Text] [Related]
2. Acceleration of nucleophilic attack on an organophosphorothioate neurotoxin, fenitrothion, by reactive counterion cationic micelles. Regioselectivity as a probe of substrate orientation within the micelle. Balakrishnan VK; Han X; VanLoon GW; Dust JM; Toullec J; Buncel E Langmuir; 2004 Aug; 20(16):6586-93. PubMed ID: 15274559 [TBL] [Abstract][Full Text] [Related]
3. Alkaline degradation of the organophosphorus pesticide fenitrothion as mediated by cationic C12, C14, C16, and C18 surfactants. Han X; Balakrishnan VK; Buncel E Langmuir; 2007 Jun; 23(12):6519-25. PubMed ID: 17489612 [TBL] [Abstract][Full Text] [Related]
4. Degradation of the pesticide fenitrothion as mediated by cationic surfactants and alpha-nucleophilic reagents. Han X; Balakrishnan VK; VanLoon GW; Buncel E Langmuir; 2006 Oct; 22(21):9009-17. PubMed ID: 17014147 [TBL] [Abstract][Full Text] [Related]
5. Kinetics and mechanism of nanoparticles-catalyzed piperidinolysis of anionic phenyl salicylate. Razak NA; Khan MN ScientificWorldJournal; 2014; 2014():604139. PubMed ID: 25478597 [TBL] [Abstract][Full Text] [Related]
7. Quantitative correlation between counterion-affinity to cationic micelles and counterion-induced micellar growth. Yusof NS; Khan MN Adv Colloid Interface Sci; 2013 Jun; 193-194():12-23. PubMed ID: 23582713 [TBL] [Abstract][Full Text] [Related]
8. Surfactant effects on environmental behavior of pesticides. Katagi T Rev Environ Contam Toxicol; 2008; 194():71-177. PubMed ID: 18069647 [TBL] [Abstract][Full Text] [Related]
9. Nucleophilic attack of salicylhydroxamate ion at C=O and P=O centers in cationic micellar media. Satnami ML; Dhritlahre S; Nagwanshi R; Karbhal I; Ghosh KK; Nome F J Phys Chem B; 2010 Dec; 114(50):16759-65. PubMed ID: 21105690 [TBL] [Abstract][Full Text] [Related]
10. Quantitative correlation between counterion (X) affinity to cationic micelles and X-induced micellar growth for X = 2,4-; 2,5-; 2,6- and 3,4-dichlorobenzoate ions. Yusof NS; Razak NA; Khan MN J Oleo Sci; 2013; 62(5):257-69. PubMed ID: 23648400 [TBL] [Abstract][Full Text] [Related]
11. Effects of electrolyte concentration and counterion valence on the microstructural flow regimes in dilute cetyltrimethylammonium tosylate micellar solutions. Tepale N; Macías ER; Bautista F; Puig JE; Manero O; Gradzielski M; Escalante JI J Colloid Interface Sci; 2011 Nov; 363(2):595-600. PubMed ID: 21868025 [TBL] [Abstract][Full Text] [Related]
12. A new semi-empirical kinetic method for the determination of ion exchange constants for the counterions of cationic micelles. Khan MN Adv Colloid Interface Sci; 2010 Sep; 159(2):160-79. PubMed ID: 20673861 [TBL] [Abstract][Full Text] [Related]
13. Soil fumigation alters adsorption and degradation behavior of pesticides in soil. Huang B; Yan D; Wang X; Wang X; Fang W; Zhang D; Ouyang C; Wang Q; Cao A Environ Pollut; 2019 Mar; 246():264-273. PubMed ID: 30557800 [TBL] [Abstract][Full Text] [Related]
14. A novel viscoelastic system from a cationic surfactant and a hydrophobic counterion. Abdel-Rahem R; Gradzielski M; Hoffmann H J Colloid Interface Sci; 2005 Aug; 288(2):570-82. PubMed ID: 15927628 [TBL] [Abstract][Full Text] [Related]
15. The effect of surfactants on the distribution of organic compounds in the soil solid/water system. Lee JF; Hsu MH; Chao HP; Huang HC; Wang SP J Hazard Mater; 2004 Oct; 114(1-3):123-30. PubMed ID: 15511582 [TBL] [Abstract][Full Text] [Related]
16. Assessing pesticide leaching and desorption in soils with different agricultural activities from Argentina (Pampa and Patagonia). Gonzalez M; Miglioranza KS; Aizpún JE; Isla FI; Peña A Chemosphere; 2010 Sep; 81(3):351-8. PubMed ID: 20705322 [TBL] [Abstract][Full Text] [Related]
17. Simple, selective and sensitive spectrophotometric determination of fenitrothion using novel chromogenic reagent. Subrahmanyam P; Krishnapriya B; Suvardhan K; Rekha D; Suneeta Y; Jayaraj B; Chiranjeevi P J Hazard Mater; 2007 Jul; 146(1-2):51-7. PubMed ID: 17188809 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of a modified QuEChERS method for the extraction of pesticides from agricultural, ornamental and forestal soils. Asensio-Ramos M; Hernández-Borges J; Ravelo-Pérez LM; Rodríguez-Delgado MA Anal Bioanal Chem; 2010 Mar; 396(6):2307-19. PubMed ID: 20127321 [TBL] [Abstract][Full Text] [Related]
19. Assessment of priority pesticides, degradation products, and pesticide adjuvants in groundwaters and top soils from agricultural areas of the Ebro river basin. Hildebrandt A; Lacorte S; Barceló D Anal Bioanal Chem; 2007 Feb; 387(4):1459-68. PubMed ID: 17211597 [TBL] [Abstract][Full Text] [Related]
20. Concentration and degradation of alternative biocides and an insecticide in surface waters and their major sinks in a semi-enclosed sea, Japan. Kaonga CC; Takeda K; Sakugawa H Chemosphere; 2016 Feb; 145():256-64. PubMed ID: 26688262 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]