These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16124325)

  • 41. Mechanistic study of photo-oxidation of Bisphenol-A (BPA) with hydrogen peroxide (H2O2) and sodium persulfate (SPS).
    Sharma J; Mishra IM; Kumar V
    J Environ Manage; 2016 Jan; 166():12-22. PubMed ID: 26468603
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reduction and removal of aqueous Cr(VI) by glow discharge plasma at the gas-solution interface.
    Ke Z; Huang Q; Zhang H; Yu Z
    Environ Sci Technol; 2011 Sep; 45(18):7841-7. PubMed ID: 21809855
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stability of 5,5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction.
    Fontmorin JM; Burgos Castillo RC; Tang WZ; Sillanpää M
    Water Res; 2016 Aug; 99():24-32. PubMed ID: 27132196
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detection of Hydroxyl and Perhydroxyl Radical Generation from Bleaching Agents with Nuclear Magnetic Resonance Spectroscopy.
    Sharma H; Sharma DS
    J Clin Pediatr Dent; 2017; 41(2):126-134. PubMed ID: 28288300
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spontaneous Generation of H
    Kim H; Lim J; Lee S; Kim HH; Lee C; Lee J; Choi W
    Environ Sci Technol; 2019 Mar; 53(5):2918-2925. PubMed ID: 30801172
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fractionation of aqueous cigarette tar extracts: fractions that contain the tar radical cause DNA damage.
    Pryor WA; Stone K; Zang LY; Bermúdez E
    Chem Res Toxicol; 1998 May; 11(5):441-8. PubMed ID: 9585474
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of substituted hydroxyl groups in the changes of solution turbidity in the oxidation of aromatic contaminants.
    Villota N; Jm L; Lm C
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1105-1112. PubMed ID: 27464665
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Olive mill wastewater degradation by Fenton oxidation with zero-valent iron and hydrogen peroxide.
    Kallel M; Belaid C; Boussahel R; Ksibi M; Montiel A; Elleuch B
    J Hazard Mater; 2009 Apr; 163(2-3):550-4. PubMed ID: 18722712
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation.
    De Vera GA; Stalter D; Gernjak W; Weinberg HS; Keller J; Farré MJ
    Water Res; 2015 Dec; 87():49-58. PubMed ID: 26378731
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The reaction rate of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186)) with hydroxyl radical.
    Abe S; Kirima K; Tsuchiya K; Okamoto M; Hasegawa T; Houchi H; Yoshizumi M; Tamaki T
    Chem Pharm Bull (Tokyo); 2004 Feb; 52(2):186-91. PubMed ID: 14758002
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems.
    Kwan WP; Voelker BM
    Environ Sci Technol; 2003 Mar; 37(6):1150-8. PubMed ID: 12680668
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Free radical degradation in aqueous solution by blowing hydrogen and carbon dioxide nanobubbles.
    Fujita T; Kurokawa H; Han Z; Zhou Y; Matsui H; Ponou J; Dodbiba G; He C; Wei Y
    Sci Rep; 2021 Feb; 11(1):3068. PubMed ID: 33542381
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Formation of hydroxyl radicals and Co3+ in the reaction of Co(2+)-EDTA with hydrogen peroxide. Catalytic effect of Fe3+.
    Eberhardt MK; Santos C; Soto MA
    Biochim Biophys Acta; 1993 May; 1157(1):102-6. PubMed ID: 8388729
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chemical destruction of MTBE using Fenton's reagent: effect of ferrous iron/hydrogen peroxide ratio.
    Burbano A; Dionysiou D; Suidan M; Richardson T
    Water Sci Technol; 2003; 47(9):165-71. PubMed ID: 12830956
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cu(II)-enhanced activation of molecular oxygen using Fe(II): Factors affecting the yield of oxidants.
    Chen Y; Feng Y; Chu H; Wu D; Zhang Y
    Chemosphere; 2019 Apr; 221():383-391. PubMed ID: 30648644
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigation of acid red 88 oxidation in water by means of electro-Fenton method for water purification.
    Özcan A; Gençten M
    Chemosphere; 2016 Mar; 146():245-52. PubMed ID: 26735724
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inhibition of Fe(2+)- and Fe(3+)- induced hydroxyl radical production by the iron-chelating drug deferiprone.
    Timoshnikov VA; Kobzeva TV; Polyakov NE; Kontoghiorghes GJ
    Free Radic Biol Med; 2015 Jan; 78():118-22. PubMed ID: 25451643
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Revisiting the Oxidizing Capacity of the Periodate-H
    Kim Y; Lee H; Oh H; Haider Z; Choi J; Shin YU; Kim HI; Lee J
    Environ Sci Technol; 2022 May; 56(9):5763-5774. PubMed ID: 35442651
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photoproduction of hydroxyl radicals in aqueous solution with algae under high-pressure mercury lamp.
    Liu X; Wu F; Deng N
    Environ Sci Technol; 2004 Jan; 38(1):296-9. PubMed ID: 14740750
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bioelectro-Fenton: A sustainable integrated process for removal of organic pollutants from water: Application to mineralization of metoprolol.
    Olvera-Vargas H; Cocerva T; Oturan N; Buisson D; Oturan MA
    J Hazard Mater; 2016 Dec; 319():13-23. PubMed ID: 26707983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.