These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16124326)

  • 1. Biodegradation of alpha-pinene in model biofilms in biofilters.
    Miller MJ; Allen DG
    Environ Sci Technol; 2005 Aug; 39(15):5856-63. PubMed ID: 16124326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal biofiltration of alpha-pinene: effects of temperature, relative humidity, and transient loads.
    Jin Y; Guo L; Veiga MC; Kennes C
    Biotechnol Bioeng; 2007 Feb; 96(3):433-43. PubMed ID: 17036365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of biofiltration for odor control: model development and parameter sensitivity.
    Li H; Crittenden JC; Mihelcic JR; Hautakangas H
    Water Environ Res; 2002; 74(1):5-16. PubMed ID: 11995866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of synthetic packing materials on the gas dispersion and biodegradation kinetics in fungal air biofilters.
    Prenafeta-Boldú FX; Illa J; van Groenestijn JW; Flotats X
    Appl Microbiol Biotechnol; 2008 May; 79(2):319-27. PubMed ID: 18404266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofiltration of cyclic air emissions of alpha-pinene at low and high frequencies.
    Dirk-Faitakis C; Allen DG
    J Air Waste Manag Assoc; 2003 Nov; 53(11):1373-83. PubMed ID: 14649757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocatalytic coatings for air pollution control: a proof of concept study on VOC biodegradation.
    Estrada JM; Bernal OI; Flickinger MC; Muñoz R; Deshusses MA
    Biotechnol Bioeng; 2015 Feb; 112(2):263-71. PubMed ID: 25115963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial response and elimination capacity in biofilters subjected to high toluene loadings.
    Song J; Kinney KA
    Appl Microbiol Biotechnol; 2005 Sep; 68(4):554-9. PubMed ID: 15806354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of hydrophobic fumed silica addition on a biofilter for pentane removal using SIFT-MS.
    González-Cortés JJ; Bruneel J; Ramírez M; Walgraeve C
    Chemosphere; 2020 Sep; 254():126738. PubMed ID: 32339799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal characteristics and kinetic analysis of an aerobic vapor-phase bioreactor for hydrophobic alpha-pinene.
    Jiang Y; Li S; Cheng Z; Zhu R; Chen J
    J Environ Sci (China); 2012; 24(8):1439-48. PubMed ID: 23513686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of substrate Henry's constant on biofilter performance.
    Zhu X; Suidan MT; Pruden A; Yang C; Alonso C; Kim BJ; Kim BR
    J Air Waste Manag Assoc; 2004 Apr; 54(4):409-18. PubMed ID: 15115369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comment on "Biodegradation of alpha-pinene in model biofilms in biofilters".
    Hites RA
    Environ Sci Technol; 2006 Apr; 40(7):2493; author reply 2494. PubMed ID: 16646495
    [No Abstract]   [Full Text] [Related]  

  • 12. Biodegradation of methanol vapor in a biofilter.
    Arulneyam D; Swaminathan T
    J Environ Sci (China); 2003 Sep; 15(5):691-6. PubMed ID: 14562933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of artificially dried biofilms for air biofiltration studies.
    Cercado B; Auria R; Cardenas B; Revah S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(7):940-8. PubMed ID: 22486663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steady- and transient-state performance of a thermophilic suspended-growth bioreactor for α-pinene removal from polluted air.
    Montes M; Rene ER; Veiga MC; Kennes C
    Chemosphere; 2013 Nov; 93(11):2914-21. PubMed ID: 24183623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of pollutant diffusion coefficients in naturally formed biofilms using a single tube extractive membrane bioreactor.
    Zhang S; Splendiani A; dos Santos LM; Livingston AG
    Biotechnol Bioeng; 1998 Jul; 59(1):80-9. PubMed ID: 10099317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of a lower irrigation system on pollutant removal and on the microflora of a biofilter.
    Sakuma T; Hattori T; Deshusses MA
    Environ Technol; 2009 May; 30(6):621-7. PubMed ID: 19603707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of anionic surfactant on n-hexane removal in biofilters.
    Cheng Y; He H; Yang C; Yan Z; Zeng G; Qian H
    Chemosphere; 2016 May; 150():248-253. PubMed ID: 26907592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the formation of secondary organic aerosol. 1. Application of theoretical principles to measurements obtained in the alpha-pinene/, beta-pinene/, sabinene/, delta3-carene/, and cyclohexane/ozone systems.
    Pankow JF; Seinfeld JH; Asher WE; Erdakos GB
    Environ Sci Technol; 2001 Mar; 35(6):1164-72. PubMed ID: 11347929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-stage gas-phase bioreactor for the combined removal of hydrogen sulphide, methanol and alpha-pinene.
    Rene ER; Jin Y; Veiga MC; Kennes C
    Environ Technol; 2009 Nov; 30(12):1261-72. PubMed ID: 19950468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological waste air treatment in biofilters.
    Deshusses MA
    Curr Opin Biotechnol; 1997 Jun; 8(3):335-9. PubMed ID: 9206016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.