BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 16125416)

  • 1. Effects of shoulder muscle fatigue caused by repetitive overhead activities on scapulothoracic and glenohumeral kinematics.
    Ebaugh DD; McClure PW; Karduna AR
    J Electromyogr Kinesiol; 2006 Jun; 16(3):224-35. PubMed ID: 16125416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scapulothoracic and glenohumeral kinematics following an external rotation fatigue protocol.
    Ebaugh DD; McClure PW; Karduna AR
    J Orthop Sports Phys Ther; 2006 Aug; 36(8):557-71. PubMed ID: 16915977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional scapulothoracic motion during active and passive arm elevation.
    Ebaugh DD; McClure PW; Karduna AR
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):700-9. PubMed ID: 15935534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scapulothoracic muscle fatigue associated with alterations in scapulohumeral rhythm kinematics during maximum resistive shoulder elevation.
    McQuade KJ; Dawson J; Smidt GL
    J Orthop Sports Phys Ther; 1998 Aug; 28(2):74-80. PubMed ID: 9699156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Posture-movement changes following repetitive motion-induced shoulder muscle fatigue.
    Fuller JR; Lomond KV; Fung J; Côté JN
    J Electromyogr Kinesiol; 2009 Dec; 19(6):1043-52. PubMed ID: 19091598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional scapulothoracic motion following treatment for breast cancer.
    Shamley D; Srinaganathan R; Oskrochi R; Lascurain-Aguirrebeña I; Sugden E
    Breast Cancer Res Treat; 2009 Nov; 118(2):315-22. PubMed ID: 18998205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scapulothoracic motion and muscle activity during the raising and lowering phases of an overhead reaching task.
    Ebaugh DD; Spinelli BA
    J Electromyogr Kinesiol; 2010 Apr; 20(2):199-205. PubMed ID: 19406665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of scapular retraction/protraction position and scapular elevation on shoulder girdle muscle activity during glenohumeral abduction.
    Contemori S; Panichi R; Biscarini A
    Hum Mov Sci; 2019 Apr; 64():55-66. PubMed ID: 30660072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement.
    Ludewig PM; Cook TM
    Phys Ther; 2000 Mar; 80(3):276-91. PubMed ID: 10696154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glenohumeral, scapular, and thoracic angles at maximum shoulder external rotation in throwing.
    Miyashita K; Kobayashi H; Koshida S; Urabe Y
    Am J Sports Med; 2010 Feb; 38(2):363-8. PubMed ID: 19822769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scapula kinematic alterations following a modified push-up plus task.
    Borstad JD; Szucs K; Navalgund A
    Hum Mov Sci; 2009 Dec; 28(6):738-51. PubMed ID: 19683822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The unstable shoulder in arm elevation: a three-dimensional and electromyographic study in subjects with glenohumeral instability.
    Matias R; Pascoal AG
    Clin Biomech (Bristol, Avon); 2006; 21 Suppl 1():S52-8. PubMed ID: 16288941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alteration in shoulder kinematics and associated muscle activity in people with idiopathic scoliosis.
    Lin JJ; Chen WH; Chen PQ; Tsauo JY
    Spine (Phila Pa 1976); 2010 May; 35(11):1151-7. PubMed ID: 20421854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of the individual muscles of the shoulder to glenohumeral joint stability during abduction.
    Yanagawa T; Goodwin CJ; Shelburne KB; Giphart JE; Torry MR; Pandy MG
    J Biomech Eng; 2008 Apr; 130(2):021024. PubMed ID: 18412511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shoulder function and 3-dimensional scapular kinematics in people with and without shoulder impingement syndrome.
    McClure PW; Michener LA; Karduna AR
    Phys Ther; 2006 Aug; 86(8):1075-90. PubMed ID: 16879042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scapular kinematics during transfers in manual wheelchair users with and without shoulder impingement.
    Finley MA; McQuade KJ; Rodgers MM
    Clin Biomech (Bristol, Avon); 2005 Jan; 20(1):32-40. PubMed ID: 15567534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of shoulder tightness on glenohumeral translation, scapular kinematics, and scapulohumeral rhythm in subjects with stiff shoulders.
    Lin JJ; Lim HK; Yang JL
    J Orthop Res; 2006 May; 24(5):1044-51. PubMed ID: 16602114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scapular kinematics during humeral elevation in adults and children.
    Dayanidhi S; Orlin M; Kozin S; Duff S; Karduna A
    Clin Biomech (Bristol, Avon); 2005 Jul; 20(6):600-6. PubMed ID: 15885859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multidirectional kinematics of the glenohumeral joint during simulated simple translation tests: impact on clinical diagnoses.
    Moore SM; Musahl V; McMahon PJ; Debski RE
    J Orthop Res; 2004 Jul; 22(4):889-94. PubMed ID: 15183451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue-induced glenohumeral and scapulothoracic kinematic variability: Implications for subacromial space reduction.
    Chopp-Hurley JN; O'Neill JM; McDonald AC; Maciukiewicz JM; Dickerson CR
    J Electromyogr Kinesiol; 2016 Aug; 29():55-63. PubMed ID: 26320811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.