These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 16125627)

  • 1. A semi-automated method for measuring the potential for protein covalent binding in drug discovery.
    Day SH; Mao A; White R; Schulz-Utermoehl T; Miller R; Beconi MG
    J Pharmacol Toxicol Methods; 2005; 52(2):278-85. PubMed ID: 16125627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of in vivo potential for metabolic activation of drugs into chemically reactive intermediate: correlation of in vitro and in vivo generation of reactive intermediates and in vitro glutathione conjugate formation in rats and humans.
    Masubuchi N; Makino C; Murayama N
    Chem Res Toxicol; 2007 Mar; 20(3):455-64. PubMed ID: 17309281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocols of in vitro protein covalent binding studies in liver.
    Lévesque JF; Day SH; Jones AN
    Methods Mol Biol; 2011; 691():283-301. PubMed ID: 20972760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactivation and covalent binding of halothane in vitro: studies with [3H]- and [14C]halothane.
    Gandolfi AJ; White RD; Sipes IG; Pohl LR
    J Pharmacol Exp Ther; 1980 Sep; 214(3):721-5. PubMed ID: 7400975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantitative high-throughput trapping assay as a measurement of potential for bioactivation.
    Meneses-Lorente G; Sakatis MZ; Schulz-Utermoehl T; De Nardi C; Watt AP
    Anal Biochem; 2006 Apr; 351(2):266-72. PubMed ID: 16473319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A zone classification system for risk assessment of idiosyncratic drug toxicity using daily dose and covalent binding.
    Nakayama S; Atsumi R; Takakusa H; Kobayashi Y; Kurihara A; Nagai Y; Nakai D; Okazaki O
    Drug Metab Dispos; 2009 Sep; 37(9):1970-7. PubMed ID: 19487250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking in vitro covalent binding burden as a tool to assess potential toxicity caused by nonspecific covalent binding of covalent drugs.
    Dahal UP; Obach RS; Gilbert AM
    Chem Res Toxicol; 2013 Nov; 26(11):1739-45. PubMed ID: 24164572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of covalent adduct formation of diclofenac to rat hepatic microsomal proteins. Retention of the glucuronic acid moiety in the adduct.
    Kretz-Rommel A; Boelsterli UA
    Drug Metab Dispos; 1994; 22(6):956-61. PubMed ID: 7895615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsomal metabolism and covalent binding of [3H/14C]-bromobenzene. Evidence for quinones as reactive metabolites.
    Narasimhan N; Weller PE; Buben JA; Wiley RA; Hanzlik RP
    Xenobiotica; 1988 May; 18(5):491-9. PubMed ID: 3400271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can in vitro metabolism-dependent covalent binding data in liver microsomes distinguish hepatotoxic from nonhepatotoxic drugs? An analysis of 18 drugs with consideration of intrinsic clearance and daily dose.
    Obach RS; Kalgutkar AS; Soglia JR; Zhao SX
    Chem Res Toxicol; 2008 Sep; 21(9):1814-22. PubMed ID: 18690722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of the cytochrome P450 mechanism-based inhibitor N-benzyl-1-aminobenzotriazole to products that covalently bind with protein in guinea pig liver and lung microsomes: comparative study with 1-aminobenzotriazole.
    Woodcroft KJ; Webb CD; Yao M; Weedon AC; Bend JR
    Chem Res Toxicol; 1997 May; 10(5):589-99. PubMed ID: 9168258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro evaluation of the potential for drug-induced toxicity based on (35)S-labeled glutathione adduct formation and daily dose.
    Miyaji Y; Makino C; Kurihara A; Suzuki W; Okazaki O
    Bioanalysis; 2012 Feb; 4(3):263-9. PubMed ID: 22303830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A trapping method for semi-quantitative assessment of reactive metabolite formation using [35S]cysteine and [14C]cyanide.
    Inoue K; Shibata Y; Takahashi H; Ohe T; Chiba M; Ishii Y
    Drug Metab Pharmacokinet; 2009; 24(3):245-54. PubMed ID: 19571436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism and binding of cyclophosphamide and its metabolite acrolein to rat hepatic microsomal cytochrome P-450.
    Marinello AJ; Bansal SK; Paul B; Koser PL; Love J; Struck RF; Gurtoo HL
    Cancer Res; 1984 Oct; 44(10):4615-21. PubMed ID: 6380709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing covalent binding of reactive drug metabolites by complete protein digestion and LC-MS analysis.
    Mitrea N; LeBlanc A; St-Onge M; Sleno L
    Bioanalysis; 2010 Jul; 2(7):1211-21. PubMed ID: 21083235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of drug metabolising mutants of cytochrome P450 BM3 (CYP102A1) as biocatalysts for the generation of reactive metabolites.
    Damsten MC; van Vugt-Lussenburg BM; Zeldenthuis T; de Vlieger JS; Commandeur JN; Vermeulen NP
    Chem Biol Interact; 2008 Jan; 171(1):96-107. PubMed ID: 17996858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for dealing with reactive intermediates in drug discovery and development.
    Nassar AE; Lopez-Anaya A
    Curr Opin Drug Discov Devel; 2004 Jan; 7(1):126-36. PubMed ID: 14982156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experiments for a systematic comparison between stable-isotope-(deuterium) labeling and radio-((14)C) labeling for the elucidation of the in vitro metabolic pattern of pharmaceutical drugs.
    Grunwald H; Hargreaves P; Gebhardt K; Klauer D; Serafyn A; Schmitt-Hoffmann A; Schleimer M; Schlotterbeck G; Wind M
    J Pharm Biomed Anal; 2013 Nov; 85():138-44. PubMed ID: 23933567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of hyperthyroidism on the in vitro metabolism and covalent binding of 1,1-dichloroethylene in rat liver microsomes.
    Gunasena GH; Kanz MF
    J Toxicol Environ Health; 1997 Oct; 52(2):169-88. PubMed ID: 9310148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the NADPH-dependent covalent binding of [14C]halothane to human liver microsomes: a role for cytochrome P4502E1 at low substrate concentrations.
    Madan A; Parkinson A
    Drug Metab Dispos; 1996 Dec; 24(12):1307-13. PubMed ID: 8971135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.