BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 16125716)

  • 1. Electrokinetic sample transport in a microchannel with spatial electrical conductivity gradients.
    Ren CL; Li D
    J Colloid Interface Sci; 2006 Feb; 294(2):482-91. PubMed ID: 16125716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of liquid conductivity differences on multi-component sample injection, pumping and stacking in microfluidic chips.
    Sinton D; Ren L; Xuan X; Li D
    Lab Chip; 2003 Aug; 3(3):173-9. PubMed ID: 15100770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An investigation of the effects of inlet channel geometry on electrokinetic instabilities.
    Pan YJ; Yang RJ
    Biomed Microdevices; 2009 Feb; 11(1):9-16. PubMed ID: 18819007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stacking due to ionic transport number mismatch during sample sweeping on microchips.
    Liu Y; Foote RS; Jacobson SC; Ramsey JM
    Lab Chip; 2005 Apr; 5(4):457-65. PubMed ID: 15791345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical and numerical analysis of temperature gradient focusing via Joule heating.
    Sommer GJ; Kim SM; Littrell RJ; Hasselbrink EF
    Lab Chip; 2007 Jul; 7(7):898-907. PubMed ID: 17594010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sample preconcentration by field amplification stacking for microchip-based capillary electrophoresis.
    Lichtenberg J; Verpoorte E; de Rooij NF
    Electrophoresis; 2001 Jan; 22(2):258-71. PubMed ID: 11288893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Joule heating on electrokinetic transport.
    Cetin B; Li D
    Electrophoresis; 2008 Mar; 29(5):994-1005. PubMed ID: 18271065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DC electrokinetic particle transport in an L-shaped microchannel.
    Ai Y; Park S; Zhu J; Xuan X; Beskok A; Qian S
    Langmuir; 2010 Feb; 26(4):2937-44. PubMed ID: 19852473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical studies of electrokinetic control of DNA concentration in a closed-end microchannel.
    Daghighi Y; Li D
    Electrophoresis; 2010 Mar; 31(5):868-78. PubMed ID: 20191548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical modeling of the Joule heating effect on electrokinetic flow focusing.
    Huang KD; Yang RJ
    Electrophoresis; 2006 May; 27(10):1957-66. PubMed ID: 16619299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical modeling of Joule heating-induced temperature gradient focusing in microfluidic channels.
    Tang G; Yang C
    Electrophoresis; 2008 Mar; 29(5):1006-12. PubMed ID: 18306182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrokinetic instability effects in microchannels with and without nanofilm coatings.
    Fu LM; Hong TF; Wen CY; Tsai CH; Lin CH
    Electrophoresis; 2008 Dec; 29(24):4871-9. PubMed ID: 19130549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrokinetic transport in nanochannels. 2. Experiments.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6782-9. PubMed ID: 16255574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of Joule heating effects on temperature gradient in diverging microchannels for isoelectric focusing applications.
    Kates B; Ren CL
    Electrophoresis; 2006 May; 27(10):1967-76. PubMed ID: 16703632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis.
    Jung B; Bharadwaj R; Santiago JG
    Electrophoresis; 2003 Oct; 24(19-20):3476-83. PubMed ID: 14595694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternating current electrokinetic motion of colloidal particles on interdigitated microelectrodes.
    Park S; Beskok A
    Anal Chem; 2008 Apr; 80(8):2832-41. PubMed ID: 18318510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite sample effect in temperature gradient focusing.
    Lin H; Shackman JG; Ross D
    Lab Chip; 2008 Jun; 8(6):969-78. PubMed ID: 18497919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature gradient focusing with field-amplified continuous sample injection for dual-stage analyte enrichment and separation.
    Munson MS; Danger G; Shackman JG; Ross D
    Anal Chem; 2007 Aug; 79(16):6201-7. PubMed ID: 17616169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels.
    Chakraborty S
    Anal Chim Acta; 2007 Dec; 605(2):175-84. PubMed ID: 18036381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electrical pumping approach to eliminate sample bias in capillary electrokinetic injection.
    Yang Y; Bao JJ
    Electrophoresis; 2007 Apr; 28(7):1063-71. PubMed ID: 17351892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.