BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 16125854)

  • 1. Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity.
    Papaxanthis C; Pozzo T; McIntyre J
    Neuroscience; 2005; 135(2):371-83. PubMed ID: 16125854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal integration of gravity in trajectory planning of vertical pointing movements.
    Crevecoeur F; Thonnard JL; Lefèvre P
    J Neurophysiol; 2009 Aug; 102(2):786-96. PubMed ID: 19458149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor planning of arm movements is direction-dependent in the gravity field.
    Gentili R; Cahouet V; Papaxanthis C
    Neuroscience; 2007 Mar; 145(1):20-32. PubMed ID: 17224242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of gravity-like torque on goal-directed arm movements in microgravity.
    Bringoux L; Blouin J; Coyle T; Ruget H; Mouchnino L
    J Neurophysiol; 2012 May; 107(9):2541-8. PubMed ID: 22298835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning.
    Gaveau J; Paizis C; Berret B; Pozzo T; Papaxanthis C
    J Neurophysiol; 2011 Aug; 106(2):620-9. PubMed ID: 21562193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Drawing movements and gravitational force: central or peripheral regulation?].
    Papaxanthis C; Pozzo T; Van Hoecke J; Vinter A; Skoura X
    C R Seances Soc Biol Fil; 1998; 192(1):187-93. PubMed ID: 9759362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal reference frame for the planning of vertical arms movements.
    Le Seac'h AB; McIntyre J
    Neurosci Lett; 2007 Aug; 423(3):211-5. PubMed ID: 17709199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse dynamic investigation of voluntary leg lateral movements in weightlessness: a new microgravity-specific strategy.
    Pedrocchi A; Baroni G; Pedotti A; Massion J; Ferrigno G
    J Biomech; 2005 Apr; 38(4):769-77. PubMed ID: 15713298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slowing of human arm movements during weightlessness: the role of vision.
    Mechtcheriakov S; Berger M; Molokanova E; Holzmueller G; Wirtenberger W; Lechner-Steinleitner S; De Col C; Kozlovskaya I; Gerstenbrand F
    Eur J Appl Physiol; 2002 Oct; 87(6):576-83. PubMed ID: 12355199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mentally represented motor actions in normal aging II. The influence of the gravito-inertial context on the duration of overt and covert arm movements.
    Personnier P; Paizis C; Ballay Y; Papaxanthis C
    Behav Brain Res; 2008 Jan; 186(2):273-83. PubMed ID: 17913253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial properties of the arm are accurately predicted during motor imagery.
    Gentili R; Cahouet V; Ballay Y; Papaxanthis C
    Behav Brain Res; 2004 Dec; 155(2):231-9. PubMed ID: 15364482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed.
    Papaxanthis C; Pozzo T; Schieppati M
    Exp Brain Res; 2003 Feb; 148(4):498-503. PubMed ID: 12582833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arm end-point trajectories under normal and micro-gravity environments.
    Papaxanthis C; Pozzo T; McIntyre J
    Acta Astronaut; 1998; 43(3-6):153-61. PubMed ID: 11541921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hand trajectories of vertical arm movements in one-G and zero-G environments. Evidence for a central representation of gravitational force.
    Papaxanthis C; Pozzo T; Popov KE; McIntyre J
    Exp Brain Res; 1998 Jun; 120(4):496-502. PubMed ID: 9655235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of microgravity on memorized arm movements.
    Berger M; Lechner-Steinleitner S; Struhal W; Gerstenbrand F; Koslovskaya IB
    J Gravit Physiol; 2004 Jul; 11(2):P115-7. PubMed ID: 16235440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction torque contributes to planar reaching at slow speed.
    Yamasaki H; Tagami Y; Fujisawa H; Hoshi F; Nagasaki H
    Biomed Eng Online; 2008 Oct; 7():27. PubMed ID: 18940016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using arm configuration to learn the effects of gyroscopes and other devices.
    Flanders M; Hondzinski JM; Soechting JF; Jackson JC
    J Neurophysiol; 2003 Jan; 89(1):450-9. PubMed ID: 12522193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic and dynamic synergies of human precision-grip movements.
    Grinyagin IV; Biryukova EV; Maier MA
    J Neurophysiol; 2005 Oct; 94(4):2284-94. PubMed ID: 15917316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of 3D limb dynamics in unconstrained overarm throws of different speeds performed by skilled baseball players.
    Hirashima M; Kudo K; Watarai K; Ohtsuki T
    J Neurophysiol; 2007 Jan; 97(1):680-91. PubMed ID: 17079349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.