These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 16125897)
21. Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and ABA- regulated maturation in developing barley seeds. Sreenivasulu N; Radchuk V; Strickert M; Miersch O; Weschke W; Wobus U Plant J; 2006 Jul; 47(2):310-27. PubMed ID: 16771774 [TBL] [Abstract][Full Text] [Related]
22. Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana. Molina I; Ohlrogge JB; Pollard M Plant J; 2008 Feb; 53(3):437-49. PubMed ID: 18179651 [TBL] [Abstract][Full Text] [Related]
23. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. Ding Z; Li S; An X; Liu X; Qin H; Wang D J Genet Genomics; 2009 Jan; 36(1):17-29. PubMed ID: 19161942 [TBL] [Abstract][Full Text] [Related]
25. Functional symmetry of the B3 network controlling seed development. Suzuki M; McCarty DR Curr Opin Plant Biol; 2008 Oct; 11(5):548-53. PubMed ID: 18691932 [TBL] [Abstract][Full Text] [Related]
26. Genetic Mapping Combined with a Transcriptome Analysis to Screen for Candidate Genes Responsive to Abscisic Acid Treatment in Di F; Wang T; Ding Y; Chen X; Wang H; Li J; Liu L DNA Cell Biol; 2020 Apr; 39(4):533-547. PubMed ID: 32031882 [No Abstract] [Full Text] [Related]
27. The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Wang HW; Zhang B; Hao YJ; Huang J; Tian AG; Liao Y; Zhang JS; Chen SY Plant J; 2007 Nov; 52(4):716-29. PubMed ID: 17877700 [TBL] [Abstract][Full Text] [Related]
28. Molecular characterization of an ABA insensitive 5 orthologue in Brassica oleracea. Zhou X; Yuan F; Wang M; Guo A; Zhang Y; Xie CG Biochem Biophys Res Commun; 2013 Jan; 430(3):1140-6. PubMed ID: 23246838 [TBL] [Abstract][Full Text] [Related]
29. Modulation by phenolic compounds of ABA-induced inhibition of mustard (Brassica juncea L. cv. RLM 198) seed germination. Sharma S; Sharma SS; Rai VK Indian J Exp Biol; 2003 Apr; 41(4):352-6. PubMed ID: 15255646 [TBL] [Abstract][Full Text] [Related]
30. Global analysis of gene expression profiles in Brassica napus developing seeds reveals a conserved lipid metabolism regulation with Arabidopsis thaliana. Niu Y; Wu GZ; Ye R; Lin WH; Shi QM; Xue LJ; Xu XD; Li Y; Du YG; Xue HW Mol Plant; 2009 Sep; 2(5):1107-22. PubMed ID: 19825684 [TBL] [Abstract][Full Text] [Related]
31. Development of a Brassica seed cDNA microarray. Xiang D; Datla R; Li F; Cutler A; Malik MR; Krochko JE; Sharma N; Fobert P; Georges F; Selvaraj G; Tsang E; Klassen D; Koh C; Deneault JS; Nantel A; Nowak J; Keller W; Bekkaoui F Genome; 2008 Mar; 51(3):236-42. PubMed ID: 18356959 [TBL] [Abstract][Full Text] [Related]
32. Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus. Obermeier C; Hosseini B; Friedt W; Snowdon R BMC Genomics; 2009 Jul; 10():295. PubMed ID: 19575793 [TBL] [Abstract][Full Text] [Related]
33. Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis. Hua W; Li RJ; Zhan GM; Liu J; Li J; Wang XF; Liu GH; Wang HZ Plant J; 2012 Feb; 69(3):432-44. PubMed ID: 21954986 [TBL] [Abstract][Full Text] [Related]
34. Characterisation of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. Kumar R; Raclaru M; Schüsseler T; Gruber J; Sadre R; Lühs W; Zarhloul KM; Friedt W; Enders D; Frentzen M; Weier D FEBS Lett; 2005 Feb; 579(6):1357-64. PubMed ID: 15733841 [TBL] [Abstract][Full Text] [Related]
35. Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed of Brassica napus during germination under stress conditions. Gao YP; Young L; Bonham-Smith P; Gusta LV Plant Mol Biol; 1999 Jul; 40(4):635-44. PubMed ID: 10480387 [TBL] [Abstract][Full Text] [Related]
36. The modulating effect of the perisperm-endosperm envelope on ABA-inhibition of seed germination in cucumber. Amritphale D; Yoneyama K; Takeuchi Y; Ramakrishna P; Kusumoto D J Exp Bot; 2005 Aug; 56(418):2173-81. PubMed ID: 15983012 [TBL] [Abstract][Full Text] [Related]
37. Gene expression at early stages of Brassica napus seed development as revealed by transcript profiling of seed-abundant cDNAs. Dong J; Keller WA; Yan W; Georges F Planta; 2004 Jan; 218(3):483-91. PubMed ID: 14574574 [TBL] [Abstract][Full Text] [Related]
38. The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Savitch LV; Allard G; Seki M; Robert LS; Tinker NA; Huner NP; Shinozaki K; Singh J Plant Cell Physiol; 2005 Sep; 46(9):1525-39. PubMed ID: 16024910 [TBL] [Abstract][Full Text] [Related]
39. iTRAQ-based quantitative proteomic analysis reveals pathways associated with re-establishing desiccation tolerance in germinating seeds of Caragana korshinskii Kom. Peng L; Sun Q; Xue H; Wang X J Proteomics; 2018 May; 179():1-16. PubMed ID: 29471058 [TBL] [Abstract][Full Text] [Related]
40. Identification of differentially expressed genes in seeds of two near-isogenic Brassica napus lines with different oil content. Li RJ; Wang HZ; Mao H; Lu YT; Hua W Planta; 2006 Sep; 224(4):952-62. PubMed ID: 16575595 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]