BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 16125990)

  • 1. Response properties of wind-sensitive giant interneurons in the fourth-instar nymphs of the cricket, Gryllus bimaculatus.
    Matsuura T; Kanou M
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Sep; 142(1):1-9. PubMed ID: 16125990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postembryonic changes in the response properties of wind-sensitive giant interneurons in cricket.
    Matsuura T; Kanou M
    J Insect Physiol; 2003 Sep; 49(9):805-15. PubMed ID: 16256682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rearing under different conditions results in different functional recoveries of giant interneurons in unilaterally cercus-ablated crickets, Gryllus bimaculatus.
    Kanou M; Kuroishi H; Takuwa H
    Zoolog Sci; 2008 Jun; 25(6):653-61. PubMed ID: 18624575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional changes of cricket giant interneurons caused by chronic unilateral cercal ablation during postembryonic development.
    Kanou M; Matsuura T; Minami N; Takanashi T
    Zoolog Sci; 2004 Jan; 21(1):7-14. PubMed ID: 14745098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cercal sensory system and giant interneurons in Gryllodes sigillatus.
    Kanou M; Nawae M; Kuroishi H
    Zoolog Sci; 2006 Apr; 23(4):365-73. PubMed ID: 16702770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronous firing by specific pairs of cercal giant interneurons in crickets encodes wind direction.
    Yono O; Shimozawa T
    Biosystems; 2008 Sep; 93(3):218-25. PubMed ID: 18550269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional recoveries of giant interneurons in the early period after unilateral cercal ablation in the cricket Gryllus bimaculatus.
    Kanou M; Kuroishi H
    Zoolog Sci; 2008 Sep; 25(9):931-6. PubMed ID: 19267603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directional sensitivity of dendritic calcium responses to wind stimuli in the cricket giant interneuron.
    Ogawa H; Baba Y; Oka K
    Neurosci Lett; 2004 Apr; 358(3):185-8. PubMed ID: 15039112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural basis of stimulus-angle-dependent motor control of wind-elicited walking behavior in the cricket Gryllus bimaculatus.
    Oe M; Ogawa H
    PLoS One; 2013; 8(11):e80184. PubMed ID: 24244644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directional sensitivity of wind-sensitive giant interneurons in the cave cricket Troglophilus neglectus.
    Schrader S; Horseman G; Cokl A
    J Exp Zool; 2002 Jan; 292(1):73-81. PubMed ID: 11754023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of single giant interneuron lesions on wind-evoked motor responses in the cockroach, Periplaneta americana.
    Westin J; Ritzmann RE
    J Neurobiol; 1982 Mar; 13(2):127-39. PubMed ID: 7062018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The function of the cercal sensory system in escape behavior of the cave cricket Troglophilus neglectus Krauss.
    Schrader S
    Pflugers Arch; 2000; 439(3 Suppl):R187-9. PubMed ID: 10653187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corollary discharge inhibition of wind-sensitive cercal giant interneurons in the singing field cricket.
    Schöneich S; Hedwig B
    J Neurophysiol; 2015 Jan; 113(1):390-9. PubMed ID: 25318763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cartesian representation of stimulus direction: parallel processing by two sets of giant interneurons in the cockroach.
    Kolton L; Camhi JM
    J Comp Physiol A; 1995 May; 176(5):691-702. PubMed ID: 7769568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Representation of sensory information in the cricket cercal sensory system. I. Response properties of the primary interneurons.
    Miller JP; Jacobs GA; Theunissen FE
    J Neurophysiol; 1991 Nov; 66(5):1680-9. PubMed ID: 1765801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central projections of cercal giant interneurons in the adult field cricket, Gryllus bimaculatus.
    Yamao H; Shidara H; Ogawa H
    J Comp Neurol; 2022 Sep; 530(13):2372-2384. PubMed ID: 35531898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavioral analyses of wind-evoked escape of the cricket, Gryllodes sigillatus.
    Kanou M; Konishi A; Suenaga R
    Zoolog Sci; 2006 Apr; 23(4):359-64. PubMed ID: 16702769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Visual Information on Wind-Evoked Escape Behavior of the Cricket, Gryllus bimaculatus.
    Kanou M; Matsuyama A; Takuwa H
    Zoolog Sci; 2014 Sep; 31(9):559-64. PubMed ID: 25186926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postembryonic changes in circadian photo-responsiveness rhythms of optic lobe interneurons in the cricket Gryllus bimaculatus.
    Uemura H; Tomioka K
    J Biol Rhythms; 2006 Aug; 21(4):279-89. PubMed ID: 16864648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of thoracic interneurons to tactile stimulation in cockroach, Periplaneta americana.
    Ritzmann RE; Pollack AJ
    J Neurobiol; 1994 Sep; 25(9):1113-28. PubMed ID: 7815067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.