BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 16126156)

  • 21. The chemistry and enzymology of the type I signal peptidases.
    Dalbey RE; Lively MO; Bron S; van Dijl JM
    Protein Sci; 1997 Jun; 6(6):1129-38. PubMed ID: 9194173
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of signal peptidase by phospholipids in membrane: characterization of phospholipid bilayer incorporated Escherichia coli signal peptidase.
    Wang Y; Bruckner R; Stein RL
    Biochemistry; 2004 Jan; 43(1):265-70. PubMed ID: 14705954
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Site-directed mutagenesis analysis of amino acids critical for activity of the type I signal peptidase of the archaeon Methanococcus voltae.
    Bardy SL; Ng SY; Carnegie DS; Jarrell KF
    J Bacteriol; 2005 Feb; 187(3):1188-91. PubMed ID: 15659694
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning, expression, and purification of functional Sec11a and Sec11b, type I signal peptidases of the archaeon Haloferax volcanii.
    Fine A; Irihimovitch V; Dahan I; Konrad Z; Eichler J
    J Bacteriol; 2006 Mar; 188(5):1911-9. PubMed ID: 16484202
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and characterization of type I signal peptidase of different malaria parasites.
    Sharma S; Pradhan A; Chauhan VS; Tuteja R
    J Biomed Biotechnol; 2005; 2005(4):301-9. PubMed ID: 16489263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conserved serine and histidine residues are critical for activity of the ER-type signal peptidase SipW of Bacillus subtilis.
    Tjalsma H; Stover AG; Driks A; Venema G; Bron S; van Dijl JM
    J Biol Chem; 2000 Aug; 275(33):25102-8. PubMed ID: 10827084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional analysis of the Streptomyces lividans type I signal peptidases.
    Geukens N; Parro V; Rivas LA; Mellado RP; Anné J
    Arch Microbiol; 2001 Nov; 176(5):377-80. PubMed ID: 11702080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis for intramembrane proteolysis by rhomboid serine proteases.
    Ben-Shem A; Fass D; Bibi E
    Proc Natl Acad Sci U S A; 2007 Jan; 104(2):462-6. PubMed ID: 17190827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oligopeptidase B: a processing peptidase involved in pathogenesis.
    Coetzer TH; Goldring JP; Huson LE
    Biochimie; 2008 Feb; 90(2):336-44. PubMed ID: 18029266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure and mechanism of tripeptidyl activity of prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis.
    Ito K; Nakajima Y; Xu Y; Yamada N; Onohara Y; Ito T; Matsubara F; Kabashima T; Nakayama K; Yoshimoto T
    J Mol Biol; 2006 Sep; 362(2):228-40. PubMed ID: 16914159
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure of a novel viral protease with a serine/lysine catalytic dyad mechanism.
    Feldman AR; Lee J; Delmas B; Paetzel M
    J Mol Biol; 2006 May; 358(5):1378-89. PubMed ID: 16584747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel.
    Bornemann T; Jöckel J; Rodnina MV; Wintermeyer W
    Nat Struct Mol Biol; 2008 May; 15(5):494-9. PubMed ID: 18391966
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and mechanism of Escherichia coli type I signal peptidase.
    Paetzel M
    Biochim Biophys Acta; 2014 Aug; 1843(8):1497-508. PubMed ID: 24333859
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of mutations in the carboxyl-terminal region on the catalytic activity of Escherichia coli signal peptidase I.
    Kim YT; Yoshida H; Kojima M; Kurita R; Nishii W; Muramatsu T; Ito H; Park SJ; Takahashi K
    J Biochem; 2008 Feb; 143(2):237-42. PubMed ID: 18032415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Signal peptidase I-mediated processing of an engineered mammalian cytochrome b(5) precursor is an exocytoplasmic post-translocational event in Escherichia coli.
    Kaderbhai NN; Harding V; Kaderbhai MA
    Mol Membr Biol; 2008 Aug; 25(5):388-99. PubMed ID: 18651317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of the site of signal peptidase cleavage in normal and variant human preproalbumin.
    Peach RJ; Boswell DR; Brennan SO
    Protein Seq Data Anal; 1991 Aug; 4(2):123-6. PubMed ID: 1946330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Archaeal signal peptidases.
    Ng SY; Chaban B; VanDyke DJ; Jarrell KF
    Microbiology (Reading); 2007 Feb; 153(Pt 2):305-14. PubMed ID: 17259602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substrate based peptide aldehyde inhibits bacterial type I signal peptidase.
    Buzder-Lantos P; Bockstael K; Anné J; Herdewijn P
    Bioorg Med Chem Lett; 2009 May; 19(10):2880-3. PubMed ID: 19362478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The catalytic mechanism of endoplasmic reticulum signal peptidase appears to be distinct from most eubacterial signal peptidases.
    VanValkenburgh C; Chen X; Mullins C; Fang H; Green N
    J Biol Chem; 1999 Apr; 274(17):11519-25. PubMed ID: 10206957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Signal peptidase I: cleaving the way to mature proteins.
    Auclair SM; Bhanu MK; Kendall DA
    Protein Sci; 2012 Jan; 21(1):13-25. PubMed ID: 22031009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.