BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 1612617)

  • 1. Electric-field distribution near rectangular microstrip radiators for hyperthermia heating: theory versus experiment in water.
    Underwood HR; Peterson AF; Magin RL
    IEEE Trans Biomed Eng; 1992 Feb; 39(2):146-53. PubMed ID: 1612617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstrip-antenna design for hyperthermia treatment of superficial tumors.
    Montecchia F
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):580-8. PubMed ID: 1601439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves.
    Gelvich EA; Mazokhin VN
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1015-23. PubMed ID: 12214873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-aided design of two-dimensional electric-type hyperthermia applicators using the finite-difference time-domain method.
    Shaw JA; Durney CH; Christensen DA
    IEEE Trans Biomed Eng; 1991 Sep; 38(9):861-70. PubMed ID: 1743734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Air cooling for an interstitial microwave hyperthermia antenna: theory and experiment.
    Eppert V; Trembly BS; Richter HJ
    IEEE Trans Biomed Eng; 1991 May; 38(5):450-60. PubMed ID: 1874527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and measured electric field distributions within an annular phased array: consideration of source antennas.
    Zhang Y; Joines WT; Jirtle RL; Samulski TV
    IEEE Trans Biomed Eng; 1993 Aug; 40(8):780-7. PubMed ID: 8258444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design optimization of interstitial antennas.
    Iskander MF; Tumeh AM
    IEEE Trans Biomed Eng; 1989 Feb; 36(2):238-46. PubMed ID: 2917769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia.
    Stauffer PR; Rossetto F; Leoncini M; Gentilli GB
    IEEE Trans Biomed Eng; 1998 May; 45(5):605-13. PubMed ID: 9581059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SAR distributions in interstitial microwave antenna arrays with a single dipole displacement.
    Clibbon KL; McCowen A; Hand JW
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):925-32. PubMed ID: 8288284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the performance characteristics of a prototype 12-element capacitive contact flexible microstrip applicator (CFMA-12) for superficial hyperthermia.
    Lee WM; Gelvich EA; van der Baan P; Mazokhin VN; van Rhoon GC
    Int J Hyperthermia; 2004 Sep; 20(6):607-24. PubMed ID: 15370817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Body conformal antennas for superficial hyperthermia: the impact of bending contact flexible microstrip applicators on their electromagnetic behavior.
    Correia D; Kok HP; de Greef M; Bel A; van Wieringen N; Crezee J
    IEEE Trans Biomed Eng; 2009 Dec; 56(12):2917-26. PubMed ID: 19695983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The characterization of semirigid coaxial antennae for interstitial and endocavitary microwave hyperthermia].
    Erb J; Klautke G; Seegenschmiedt HM; Engelbrecht R; Schaller G; Sauer R
    Strahlenther Onkol; 1994 Nov; 170(11):654-64. PubMed ID: 7974181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics and performance evaluation of the capacitive Contact Flexible Microstrip Applicator operating at 70 MHz for external hyperthermia.
    van Wieringen N; Wiersma J; Zum Vörde Sive Vörding P; Oldenborg S; Gelvich EA; Mazokhin VN; van Dijk JD; Crezee J
    Int J Hyperthermia; 2009 Nov; 25(7):542-53. PubMed ID: 19848617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental investigation of an adaptive feedback algorithm for hot spot reduction in radio-frequency phased-array hyperthermia.
    Fenn AJ; King GA
    IEEE Trans Biomed Eng; 1996 Mar; 43(3):273-80. PubMed ID: 8682539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Design of an microwave applicator using for tumor in superficial layer].
    Sun B; Lu X; Cao Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2010 May; 34(3):198-201. PubMed ID: 20812645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An edge-element based finite element model of microwave heating in hyperthermia: method and verification.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):426-40. PubMed ID: 12227929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An edge-element based finite element model of microwave heating in hyperthermia: application to a bolus design.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):441-53. PubMed ID: 12227930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia.
    Chakaravarthi G; Arunachalam K
    Int J Hyperthermia; 2015; 31(7):737-48. PubMed ID: 26365603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and experimental analysis of air cooling for intracavitary microwave hyperthermia applicators.
    Yeh MM; Trembly BS; Douple EB; Ryan TP; Hoopes PJ; Jonsson E; Heaney JA
    IEEE Trans Biomed Eng; 1994 Sep; 41(9):874-82. PubMed ID: 7959814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and numerical investigation of feed-point parameters in a 3-D hyperthermia applicator using different FDTD models of feed networks.
    Nadobny J; Fähling H; Hagmann MJ; Turner PF; Wlodarczyk W; Gellermann JM; Deuflhard P; Wust P
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1348-59. PubMed ID: 12450365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.