BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 1612617)

  • 21. Theoretical comparison of intraluminal heating techniques.
    Kok HP; van Haaren PM; van de Kamer JB; Crezee J
    Int J Hyperthermia; 2007 Jun; 23(4):395-411. PubMed ID: 17558739
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FDTD simulations to assess the performance of CFMA-434 applicators for superficial hyperthermia.
    Kok HP; De Greef M; Correia D; Vörding PJ; Van Stam G; Gelvich EA; Bel A; Crezee J
    Int J Hyperthermia; 2009; 25(6):462-76. PubMed ID: 19657850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heating patterns generated by phase modulation of a hexagonal array of interstitial antennas.
    Zhang Y; Joines WT; Oleson JR
    IEEE Trans Biomed Eng; 1991 Jan; 38(1):92-7. PubMed ID: 2026438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heating applicator based on reentrant cavity with optimized local heating characteristics.
    Ishihara Y; Kameyama Y; Minegishi Y; Wadamori N
    Int J Hyperthermia; 2008 Dec; 24(8):694-704. PubMed ID: 18608576
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Body conformable 915 MHz microstrip array applicators for large surface area hyperthermia.
    Lee ER; Wilsey TR; Tarczy-Hornoch P; Kapp DS; Fessenden P; Lohrbach A; Prionas SD
    IEEE Trans Biomed Eng; 1992 May; 39(5):470-83. PubMed ID: 1526638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Research on the hyperthermia-therapy performances of invasive microwave antennas].
    Yang GS; Liu YH; Wang JQ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2002 Mar; 26(3):170-1, 217. PubMed ID: 16104297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Radiologic hyperthermia with microwaves and radio-frequencies. I. Presentation of a multifrequency system].
    Sannazzari GL; Gabriele P; Orecchia R; Fillini C; Melano A; Ragona R; Audone B; Bolla L
    Radiol Med; 1986; 72(7-8):564-72. PubMed ID: 3737991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Characterization of helical coil microwave antenna for interstitial hyperthermia].
    Satoh T; Stauffer PR; Fike JR
    Gan No Rinsho; 1988 Sep; 34(11):1544-9. PubMed ID: 3184458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scanning E-field sensor device for online measurements in annular phased-array systems.
    Wust P; Berger J; Fähling H; Nadobny J; Gellermann J; Tilly W; Rau B; Petermann K; Felix R
    Int J Radiat Oncol Biol Phys; 1999 Mar; 43(4):927-37. PubMed ID: 10098449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A practical approach to thermography in a hyperthermia/magnetic resonance hybrid system: validation in a heterogeneous phantom.
    Gellermann J; Wlodarczyk W; Ganter H; Nadobny J; Fähling H; Seebass M; Felix R; Wust P
    Int J Radiat Oncol Biol Phys; 2005 Jan; 61(1):267-77. PubMed ID: 15629620
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional electromagnetic power deposition in tumors using interstitial antenna arrays.
    Furse CM; Iskander MF
    IEEE Trans Biomed Eng; 1989 Oct; 36(10):977-86. PubMed ID: 2793198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Miniature dipole E-field probes for characterizing both phase and amplitude of microwave radiators for hyperthermia.
    Gopal MK; Cetas TC; Rosman D
    Int J Hyperthermia; 1995; 11(6):769-83. PubMed ID: 8586899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Implantable helical coil microwave antenna for interstitial hyperthermia.
    Satoh T; Stauffer PR
    Int J Hyperthermia; 1988; 4(5):497-512. PubMed ID: 3392424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electric field measurements and computational modeling at ultrahigh-field MRI.
    Kangarlu A; Tang L; Ibrahim TS
    Magn Reson Imaging; 2007 Oct; 25(8):1222-6. PubMed ID: 17368794
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Research of high precision of temperature measurement in microwave hyperthermia therapy].
    Wang H; Tang C; Fan X; Yang G
    Zhongguo Yi Liao Qi Xie Za Zhi; 2002 Sep; 26(5):332-4, 341. PubMed ID: 16104261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Localized heating characteristics of hyperthermia using a reentrant cavity.
    Ishihara Y; Wadamori N
    J Med Eng Technol; 2008; 32(5):348-57. PubMed ID: 18821413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Study of a new microwave applicator for hyperthermia treatment of uterocervical cancer].
    Wang W; Ding R; Wang H; Li Y; Lin S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jan; 19(1):175-7. PubMed ID: 11951512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [A simple coupled instrument for hyperthermia].
    Wang W
    Zhongguo Yi Liao Qi Xie Za Zhi; 2001 Jul; 25(4):239. PubMed ID: 12583228
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An RF phased array applicator designed for hyperthermia breast cancer treatments.
    Wu L; McGough RJ; Arabe OA; Samulski TV
    Phys Med Biol; 2006 Jan; 51(1):1-20. PubMed ID: 16357427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SAR pattern perturbations from resonance effects in water bolus layers used with superficial microwave hyperthermia applicators.
    Neuman DG; Stauffer PR; Jacobsen S; Rossetto F
    Int J Hyperthermia; 2002; 18(3):180-93. PubMed ID: 12028636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.