These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 16126247)

  • 1. Removal of estrone and 17beta-estradiol from water by adsorption.
    Zhang Y; Zhou JL
    Water Res; 2005 Oct; 39(16):3991-4003. PubMed ID: 16126247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence and removal of endocrine disrupting chemicals in wastewater.
    Zhang Y; Zhou JL
    Chemosphere; 2008 Oct; 73(5):848-53. PubMed ID: 18667225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorbability of estrone and 17beta-estradiol in water onto activated carbon.
    Fukuhara T; Iwasaki S; Kawashima M; Shinohara O; Abe I
    Water Res; 2006 Jan; 40(2):241-8. PubMed ID: 16376964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removing 17β-estradiol from drinking water in a biologically active carbon (BAC) reactor modified from a granular activated carbon (GAC) reactor.
    Li Z; Dvorak B; Li X
    Water Res; 2012 Jun; 46(9):2828-36. PubMed ID: 22483837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of endocrine disrupting chemicals from aqueous phase using spherical microporous carbon prepared from waste polymeric exchanger.
    Long C; Lu J; Li A; Zhang Q
    Water Sci Technol; 2009; 60(6):1607-14. PubMed ID: 19759463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of endocrine disrupter compounds from municipal wastewater by an innovative biological technology.
    Balest L; Mascolo G; Di Iaconi C; Lopez A
    Water Sci Technol; 2008; 58(4):953-6. PubMed ID: 18776635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorptive selenite removal from water using iron-coated GAC adsorbents.
    Zhang N; Lin LS; Gang D
    Water Res; 2008 Aug; 42(14):3809-16. PubMed ID: 18694584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon.
    Mondal P; Majumder CB; Mohanty B
    J Hazard Mater; 2008 Feb; 150(3):695-702. PubMed ID: 17574333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dye removal from wastewater using the adsorbent developed from sewage sludge.
    Chen CY; Wang P; Zhuang YY
    J Environ Sci (China); 2005; 17(6):1018-21. PubMed ID: 16465899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of endocrine disrupting chemicals in a large scale membrane bioreactor plant combined with anaerobic-anoxic-oxic process for municipal wastewater reclamation.
    Wu C; Xue W; Zhou H; Huang X; Wen X
    Water Sci Technol; 2011; 64(7):1511-8. PubMed ID: 22179650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of chromium(III) from tannery wastewater using activated carbon from sugar industrial waste.
    Fahim NF; Barsoum BN; Eid AE; Khalil MS
    J Hazard Mater; 2006 Aug; 136(2):303-9. PubMed ID: 16442717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of emerging contaminants of concern by alternative adsorbents.
    Rossner A; Snyder SA; Knappe DR
    Water Res; 2009 Aug; 43(15):3787-96. PubMed ID: 19577267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth.
    Mohan D; Singh KP; Singh VK
    J Hazard Mater; 2006 Jul; 135(1-3):280-95. PubMed ID: 16442720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of adsorption process to remove organic mercury thimerosal from industrial process wastewater.
    Velicu M; Fu H; Suri RP; Woods K
    J Hazard Mater; 2007 Sep; 148(3):599-605. PubMed ID: 17459583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of biodegradation and sorption by humic acid on the estrogenicity of 17β-estradiol.
    Lee JH; Zhou JL; Kim SD
    Chemosphere; 2011 Nov; 85(8):1383-9. PubMed ID: 21872903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(acrylamide) functionalized chitosan: an efficient adsorbent for azo dyes from aqueous solutions.
    Singh V; Sharma AK; Sanghi R
    J Hazard Mater; 2009 Jul; 166(1):327-35. PubMed ID: 19097701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a new adsorbent from agro-industrial waste and its potential use in endocrine disruptor compound removal.
    Rovani S; Censi MT; Pedrotti SL; Lima EC; Cataluña R; Fernandes AN
    J Hazard Mater; 2014 Apr; 271():311-20. PubMed ID: 24647264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of Cr(VI) using silica-based adsorbent prepared by radiation-induced grafting.
    Qiu J; Wang Z; Li H; Xu L; Peng J; Zhai M; Yang C; Li J; Wei G
    J Hazard Mater; 2009 Jul; 166(1):270-6. PubMed ID: 19117674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull.
    Thinakaran N; Baskaralingam P; Pulikesi M; Panneerselvam P; Sivanesan S
    J Hazard Mater; 2008 Mar; 151(2-3):316-22. PubMed ID: 17689864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of adsorption using granular activated carbon (GAC) for the enhancement of removal of chromium from synthetic wastewater by electrocoagulation.
    Vivek Narayanan N; Ganesan M
    J Hazard Mater; 2009 Jan; 161(1):575-80. PubMed ID: 18485589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.