These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 16126416)
1. Segmentation and quantification of black holes in multiple sclerosis. Datta S; Sajja BR; He R; Wolinsky JS; Gupta RK; Narayana PA Neuroimage; 2006 Jan; 29(2):467-74. PubMed ID: 16126416 [TBL] [Abstract][Full Text] [Related]
2. Unified approach for multiple sclerosis lesion segmentation on brain MRI. Sajja BR; Datta S; He R; Mehta M; Gupta RK; Wolinsky JS; Narayana PA Ann Biomed Eng; 2006 Jan; 34(1):142-51. PubMed ID: 16525763 [TBL] [Abstract][Full Text] [Related]
3. Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI. Wu Y; Warfield SK; Tan IL; Wells WM; Meier DS; van Schijndel RA; Barkhof F; Guttmann CR Neuroimage; 2006 Sep; 32(3):1205-15. PubMed ID: 16797188 [TBL] [Abstract][Full Text] [Related]
4. Multiple sclerosis lesion quantification using fuzzy-connectedness principles. Udupa JK; Wei L; Samarasekera S; Miki Y; van Buchem MA; Grossman RI IEEE Trans Med Imaging; 1997 Oct; 16(5):598-609. PubMed ID: 9368115 [TBL] [Abstract][Full Text] [Related]
5. A dual modeling approach to automatic segmentation of cerebral T2 hyperintensities and T1 black holes in multiple sclerosis. Valcarcel AM; Linn KA; Khalid F; Vandekar SN; Tauhid S; Satterthwaite TD; Muschelli J; Martin ML; Bakshi R; Shinohara RT Neuroimage Clin; 2018; 20():1211-1221. PubMed ID: 30391859 [TBL] [Abstract][Full Text] [Related]
6. Segmentation of gadolinium-enhanced lesions on MRI in multiple sclerosis. Datta S; Sajja BR; He R; Gupta RK; Wolinsky JS; Narayana PA J Magn Reson Imaging; 2007 May; 25(5):932-7. PubMed ID: 17457804 [TBL] [Abstract][Full Text] [Related]
7. Robust texture features for response monitoring of glioblastoma multiforme on T1-weighted and T2-FLAIR MR images: a preliminary investigation in terms of identification and segmentation. Assefa D; Keller H; Ménard C; Laperriere N; Ferrari RJ; Yeung I Med Phys; 2010 Apr; 37(4):1722-36. PubMed ID: 20443493 [TBL] [Abstract][Full Text] [Related]
8. Non-locally regularized segmentation of multiple sclerosis lesion from multi-channel MRI data. Gao J; Li C; Feng C; Xie M; Yin Y; Davatzikos C Magn Reson Imaging; 2014 Oct; 32(8):1058-66. PubMed ID: 24948583 [TBL] [Abstract][Full Text] [Related]
9. Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling. Valverde S; Oliver A; Roura E; Pareto D; Vilanova JC; Ramió-Torrentà L; Sastre-Garriga J; Montalban X; Rovira À; Lladó X Neuroimage Clin; 2015; 9():640-7. PubMed ID: 26740917 [TBL] [Abstract][Full Text] [Related]
10. A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. Shiee N; Bazin PL; Ozturk A; Reich DS; Calabresi PA; Pham DL Neuroimage; 2010 Jan; 49(2):1524-35. PubMed ID: 19766196 [TBL] [Abstract][Full Text] [Related]
11. Automatic delineation of Gd enhancements on magnetic resonance images in multiple sclerosis. He R; Narayana PA Med Phys; 2002 Jul; 29(7):1536-46. PubMed ID: 12148736 [TBL] [Abstract][Full Text] [Related]
12. Fuzzy approach toward reducing false positives in the detection of small multiple sclerosis lesions in magnetic resonance images. Aymerich FX; Sobrevilla P; Montseny E; Rovira A Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5694-7. PubMed ID: 22255632 [TBL] [Abstract][Full Text] [Related]
13. Validating Nonlinear Registration to Improve Subtraction Images for Lesion Detection and Quantification in Multiple Sclerosis. Kotari V; Salha R; Wang D; Wood E; Salvetti M; Ristori G; Tang L; Bagnato F; Ikonomidou VN J Neuroimaging; 2018 Jan; 28(1):70-78. PubMed ID: 29064129 [TBL] [Abstract][Full Text] [Related]
15. Hypointense multiple sclerosis lesions on T1-weighted spin echo magnetic resonance images: their contribution in understanding multiple sclerosis evolution. Barkhof F; McGowan JC; van Waesberghe JH; Grossman RI J Neurol Neurosurg Psychiatry; 1998 May; 64 Suppl 1():S77-9. PubMed ID: 9647290 [TBL] [Abstract][Full Text] [Related]
16. [Segmentation of multiple sclerosis lesions based on Markov random fields model for MR images]. Li B; Chen W Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Aug; 26(4):861-5. PubMed ID: 19813627 [TBL] [Abstract][Full Text] [Related]
17. A new computer-assisted method for the quantification of enhancing lesions in multiple sclerosis. Samarasekera S; Udupa JK; Miki Y; Wei L; Grossman RI J Comput Assist Tomogr; 1997; 21(1):145-51. PubMed ID: 9022787 [TBL] [Abstract][Full Text] [Related]
18. Quantification of multiple sclerosis lesion load and brain tissue volumetry using multiparameter MRI: methodology and reproducibility. Ding Z; Preiningerova J; Cannistraci CJ; Vollmer TL; Gore JC; Anderson AW Magn Reson Imaging; 2005 Apr; 23(3):445-52. PubMed ID: 15862645 [TBL] [Abstract][Full Text] [Related]
19. A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images. Khayati R; Vafadust M; Towhidkhah F; Nabavi SM Comput Med Imaging Graph; 2008 Mar; 32(2):124-33. PubMed ID: 18055174 [TBL] [Abstract][Full Text] [Related]
20. Segmentation of human brain MR images using rule-based fuzzy logic inference. Denkowski M; Chlebiej M; Mikołajczak P Stud Health Technol Inform; 2004; 105():264-72. PubMed ID: 15718615 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]