These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 16126828)

  • 1. Flexible charged macromolecules on mixed fluid lipid membranes: theory and Monte Carlo simulations.
    Tzlil S; Ben-Shaul A
    Biophys J; 2005 Nov; 89(5):2972-87. PubMed ID: 16126828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo study of polyelectrolyte adsorption on mixed lipid membrane.
    Duan X; Zhang R; Li Y; Shi T; An L; Huang Q
    J Phys Chem B; 2013 Jan; 117(4):989-1002. PubMed ID: 23289934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The "electrostatic-switch" mechanism: Monte Carlo study of MARCKS-membrane interaction.
    Tzlil S; Murray D; Ben-Shaul A
    Biophys J; 2008 Aug; 95(4):1745-57. PubMed ID: 18502797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein diffusion on charged membranes: a dynamic mean-field model describes time evolution and lipid reorganization.
    Khelashvili G; Weinstein H; Harries D
    Biophys J; 2008 Apr; 94(7):2580-97. PubMed ID: 18065451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compositional redistribution and dynamic heterogeneity in mixed lipid membrane induced by polyelectrolyte adsorption: effects of chain rigidity.
    Duan X; Li Y; Zhang R; Shi T; An L; Huang Q
    Eur Phys J E Soft Matter; 2014 Aug; 37(8):27. PubMed ID: 25143187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic origins of polyelectrolyte adsorption: Theory and Monte Carlo simulations.
    Wang L; Liang H; Wu J
    J Chem Phys; 2010 Jul; 133(4):044906. PubMed ID: 20687685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid demixing and protein-protein interactions in the adsorption of charged proteins on mixed membranes.
    May S; Harries D; Ben-Shaul A
    Biophys J; 2000 Oct; 79(4):1747-60. PubMed ID: 11023883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of basic peptides to membranes produces lateral domains enriched in the acidic lipids phosphatidylserine and phosphatidylinositol 4,5-bisphosphate: an electrostatic model and experimental results.
    Denisov G; Wanaski S; Luan P; Glaser M; McLaughlin S
    Biophys J; 1998 Feb; 74(2 Pt 1):731-44. PubMed ID: 9533686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavior of rodlike polyelectrolytes near an oppositely charged surface.
    Messina R
    J Chem Phys; 2006 Jan; 124(1):14705. PubMed ID: 16409049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral dynamics of charged lipids and peripheral proteins in spatially heterogeneous membranes: comparison of continuous and Monte Carlo approaches.
    Kiselev VY; Leda M; Lobanov AI; Marenduzzo D; Goryachev AB
    J Chem Phys; 2011 Oct; 135(15):155103. PubMed ID: 22029337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rigid rod anchored to infinite membrane.
    Guo K; Qiu F; Zhang H; Yang Y
    J Chem Phys; 2005 Aug; 123(7):074906. PubMed ID: 16229619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of chain rigidity on the adsorption of a polyelectrolyte chain on mixed lipid monolayer: a Monte Carlo study.
    Duan X; Ding M; Zhang R; Li L; Shi T; An L; Huang Q; Xu WS
    J Phys Chem B; 2015 May; 119(19):6041-9. PubMed ID: 25905643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent counterions: a Monte Carlo simulation study.
    Luque-Caballero G; Martín-Molina A; Quesada-Pérez M
    J Chem Phys; 2014 May; 140(17):174701. PubMed ID: 24811649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Concentration and Ionization Degree of Anchoring Cationic Polymers on the Lateral Heterogeneity of Anionic Lipid Monolayers.
    Duan X; Zhang Y; Li L; Zhang R; Ding M; Huang Q; Xu WS; Shi T; An L
    J Phys Chem B; 2017 Feb; 121(5):984-994. PubMed ID: 28110529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion in two-component lipid membranes--a fluorescence correlation spectroscopy and monte carlo simulation study.
    Hac AE; Seeger HM; Fidorra M; Heimburg T
    Biophys J; 2005 Jan; 88(1):317-33. PubMed ID: 15501937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational changes of peptides at solid/liquid interfaces: a Monte Carlo study.
    Mungikar AA; Forciniti D
    Biomacromolecules; 2004; 5(6):2147-59. PubMed ID: 15530028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of zwitterionic lipids on the electrostatic adsorption of macroions onto mixed lipid membranes.
    Haugen A; May S
    J Chem Phys; 2007 Dec; 127(21):215104. PubMed ID: 18067381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of molecular brushes with polyelectrolyte backbones onto oppositely charged surfaces: a self-consistent field theory.
    Feuz L; Leermakers FA; Textor M; Borisov O
    Langmuir; 2008 Jul; 24(14):7232-44. PubMed ID: 18558731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulation and molecular theory of tethered polyelectrolytes.
    Hehmeyer OJ; Arya G; Panagiotopoulos AZ; Szleifer I
    J Chem Phys; 2007 Jun; 126(24):244902. PubMed ID: 17614585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: a Monte Carlo simulation study in the Debye-Hückel approximation.
    Truzzolillo D; Bordi F; Sciortino F; Sennato S
    J Chem Phys; 2010 Jul; 133(2):024901. PubMed ID: 20632770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.