BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 16126847)

  • 1. Identifying cooperative transcriptional regulations using protein-protein interactions.
    Nagamine N; Kawada Y; Sakakibara Y
    Nucleic Acids Res; 2005; 33(15):4828-37. PubMed ID: 16126847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical methods for identifying yeast cell cycle transcription factors.
    Tsai HK; Lu HH; Li WH
    Proc Natl Acad Sci U S A; 2005 Sep; 102(38):13532-7. PubMed ID: 16157877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast cell cycle transcription factors identification by variable selection criteria.
    Wang H; Wang YH; Wu WS
    Gene; 2011 Oct; 485(2):172-6. PubMed ID: 21703335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Group SCAD regression analysis for microarray time course gene expression data.
    Wang L; Chen G; Li H
    Bioinformatics; 2007 Jun; 23(12):1486-94. PubMed ID: 17463025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring transcriptional regulatory networks from high-throughput data.
    Wang RS; Wang Y; Zhang XS; Chen L
    Bioinformatics; 2007 Nov; 23(22):3056-64. PubMed ID: 17890736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Computational Method for Identifying Yeast Cell Cycle Transcription Factors.
    Wu WS
    Methods Mol Biol; 2016; 1342():209-19. PubMed ID: 26254926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying cooperativity among transcription factors controlling the cell cycle in yeast.
    Banerjee N; Zhang MQ
    Nucleic Acids Res; 2003 Dec; 31(23):7024-31. PubMed ID: 14627835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational identification of transcription factor binding sites via a transcription-factor-centric clustering (TFCC) algorithm.
    Zhu Z; Pilpel Y; Church GM
    J Mol Biol; 2002 Apr; 318(1):71-81. PubMed ID: 12054769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome network component analysis with limited microarray data.
    Galbraith SJ; Tran LM; Liao JC
    Bioinformatics; 2006 Aug; 22(15):1886-94. PubMed ID: 16766556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying transcriptional regulatory networks by integrating sequence features and microarray data.
    Liu H
    Bioprocess Biosyst Eng; 2010 May; 33(4):495-505. PubMed ID: 19657679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome profiling of human hepatocytes treated with Aroclor 1254 reveals transcription factor regulatory networks and clusters of regulated genes.
    Reymann S; Borlak J
    BMC Genomics; 2006 Aug; 7():217. PubMed ID: 16934159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive performance evaluation on the prediction results of existing cooperative transcription factors identification algorithms.
    Lai FJ; Chang HT; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 4(Suppl 4):S9. PubMed ID: 25521604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting genetic regulatory response using classification.
    Middendorf M; Kundaje A; Wiggins C; Freund Y; Leslie C
    Bioinformatics; 2004 Aug; 20 Suppl 1():i232-40. PubMed ID: 15262804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of transcription factor cooperativity via stochastic system model.
    Chang YH; Wang YC; Chen BS
    Bioinformatics; 2006 Sep; 22(18):2276-82. PubMed ID: 16844711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational "genome walk" technique to identify regulatory interactions in gene networks.
    Wagner A
    Pac Symp Biocomput; 1998; ():264-78. PubMed ID: 9697188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating gene regulatory networks and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide data.
    Nariai N; Tamada Y; Imoto S; Miyano S
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii206-12. PubMed ID: 16204105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data.
    Kim SY; Kim Y
    BMC Bioinformatics; 2006 Jul; 7():330. PubMed ID: 16817975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning combinatorial transcriptional dynamics from gene expression data.
    Opper M; Sanguinetti G
    Bioinformatics; 2010 Jul; 26(13):1623-9. PubMed ID: 20444835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic modeling of cis-regulatory circuits and gene expression prediction via cross-gene identification.
    Lin LH; Lee HC; Li WH; Chen BS
    BMC Bioinformatics; 2005 Oct; 6():258. PubMed ID: 16232312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.