These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 16127548)
1. Towards an understanding of the interactions of Trypanosoma cruzi and Trypanosoma rangeli within the reduviid insect host Rhodnius prolixus. Azambuja P; Ratcliffe NA; Garcia ES An Acad Bras Cienc; 2005 Sep; 77(3):397-404. PubMed ID: 16127548 [TBL] [Abstract][Full Text] [Related]
2. Trypanosoma cruzi and Trypanosoma rangeli: interplay with hemolymph components of Rhodnius prolixus. Mello CB; Garcia ES; Ratcliffe NA; Azambuja P J Invertebr Pathol; 1995 May; 65(3):261-8. PubMed ID: 7745280 [TBL] [Abstract][Full Text] [Related]
3. Trypanosoma rangeli interactions within the vector Rhodnius prolixus: a mini review. Azambuja P; Garcia ES Mem Inst Oswaldo Cruz; 2005 Aug; 100(5):567-72. PubMed ID: 16184237 [TBL] [Abstract][Full Text] [Related]
4. Exploring the role of insect host factors in the dynamics of Trypanosoma cruzi-Rhodnius prolixus interactions. Garcia ES; Ratcliffe NA; Whitten MM; Gonzalez MS; Azambuja P J Insect Physiol; 2007 Jan; 53(1):11-21. PubMed ID: 17141801 [TBL] [Abstract][Full Text] [Related]
5. Role of superoxide and reactive nitrogen intermediates in Rhodnius prolixus (Reduviidae)/Trypanosoma rangeli interactions. Whitten MM; Mello CB; Gomes SA; Nigam Y; Azambuja P; Garcia ES; Ratcliffe NA Exp Parasitol; 2001 May; 98(1):44-57. PubMed ID: 11426951 [TBL] [Abstract][Full Text] [Related]
6. Development and interactions of Trypanosoma rangeli in and with the reduviid bug Rhodnius prolixus. Hecker H; Schwarzenbach M; Rudin W Parasitol Res; 1990; 76(4):311-8. PubMed ID: 2186407 [TBL] [Abstract][Full Text] [Related]
7. Behavioral fever response in Rhodnius prolixus (Reduviidae: Triatominae) to intracoelomic inoculation of Trypanosoma cruzi. Hinestroza G; Ortiz MI; Molina J Rev Soc Bras Med Trop; 2016; 49(4):425-32. PubMed ID: 27598628 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of hemocyte microaggregation reactions in Rhodnius prolixus larvae orally infected with Trypanosoma rangeli. Garcia ES; Machado EM; Azambuja P Exp Parasitol; 2004; 107(1-2):31-8. PubMed ID: 15208035 [TBL] [Abstract][Full Text] [Related]
9. Trypanosoma cruzi-Trypanosoma rangeli co-infection ameliorates negative effects of single trypanosome infections in experimentally infected Rhodnius prolixus. Peterson JK; Graham AL; Elliott RJ; Dobson AP; Triana Chávez O Parasitology; 2016 Aug; 143(9):1157-67. PubMed ID: 27174360 [TBL] [Abstract][Full Text] [Related]
10. Studies on Trypanosoma rangeli Tejera, 1920. VI. Developmental pattern in the haemolymph of Rhodnius prolixus. Añez N Mem Inst Oswaldo Cruz; 1983; 78(4):413-9. PubMed ID: 6400168 [TBL] [Abstract][Full Text] [Related]
11. Modulation of IMD, Toll, and Jak/STAT Immune Pathways Genes in the Fat Body of Rolandelli A; Nascimento AEC; Silva LS; Rivera-Pomar R; Guarneri AA Front Cell Infect Microbiol; 2020; 10():598526. PubMed ID: 33537241 [No Abstract] [Full Text] [Related]
12. Exposure to Trypanosoma parasites induces changes in the microbiome of the Chagas disease vector Rhodnius prolixus. Eberhard FE; Klimpel S; Guarneri AA; Tobias NJ Microbiome; 2022 Mar; 10(1):45. PubMed ID: 35272716 [TBL] [Abstract][Full Text] [Related]
13. Lectins of distinct specificity in Rhodnius prolixus interact selectively with Trypanosoma cruzi. Pereira ME; Andrade AF; Ribeiro JM Science; 1981 Feb; 211(4482):597-600. PubMed ID: 7006082 [TBL] [Abstract][Full Text] [Related]
14. Rhodnius prolixus: from physiology by Wigglesworth to recent studies of immune system modulation by Trypanosoma cruzi and Trypanosoma rangeli. Azambuja P; Garcia ES; Waniek PJ; Vieira CS; Figueiredo MB; Gonzalez MS; Mello CB; Castro DP; Ratcliffe NA J Insect Physiol; 2017; 97():45-65. PubMed ID: 27866813 [TBL] [Abstract][Full Text] [Related]
15. A standardizable protocol for infection of Rhodnius prolixus with Trypanosoma rangeli, which mimics natural infections and reveals physiological effects of infection upon the insect. Ferreira LL; Lorenzo MG; Elliot SL; Guarneri AA J Invertebr Pathol; 2010 Sep; 105(1):91-7. PubMed ID: 20546751 [TBL] [Abstract][Full Text] [Related]
16. Rhodnius neivai: a new experimental vector of Trypanosoma rangeli. D'Alessandro A; de Hincapie O Am J Trop Med Hyg; 1986 May; 35(3):512-4. PubMed ID: 3518505 [TBL] [Abstract][Full Text] [Related]
17. Trypanosomes Modify the Behavior of Their Insect Hosts: Effects on Locomotion and on the Expression of a Related Gene. Marliére NP; Latorre-Estivalis JM; Lorenzo MG; Carrasco D; Alves-Silva J; Rodrigues Jde O; Ferreira Lde L; Lara Lde M; Lowenberger C; Guarneri AA PLoS Negl Trop Dis; 2015; 9(8):e0003973. PubMed ID: 26291723 [TBL] [Abstract][Full Text] [Related]
18. Participation of Trypanosoma cruzi gp63 molecules on the interaction with Rhodnius prolixus. Rebello KM; Uehara LA; Ennes-Vidal V; Garcia-Gomes AS; Britto C; Azambuja P; Menna-Barreto RFS; Santos ALS; Branquinha MH; d'Avila-Levy CM Parasitology; 2019 Jul; 146(8):1075-1082. PubMed ID: 31057143 [TBL] [Abstract][Full Text] [Related]
19. Parasite-mediated interactions within the insect vector: Trypanosoma rangeli strategies. Garcia ES; Castro DP; Figueiredo MB; Azambuja P Parasit Vectors; 2012 May; 5():105. PubMed ID: 22647620 [TBL] [Abstract][Full Text] [Related]
20. Effects of infection by Trypanosoma cruzi and Trypanosoma rangeli on the reproductive performance of the vector Rhodnius prolixus. Fellet MR; Lorenzo MG; Elliot SL; Carrasco D; Guarneri AA PLoS One; 2014; 9(8):e105255. PubMed ID: 25136800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]