BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16127921)

  • 1. Nanoimaging with a compact extreme-ultraviolet laser.
    Vaschenko G; Brizuela F; Brewer C; Grisham M; Mancini H; Menoni CS; Marconi MC; Rocca JJ; Chao W; Liddle JA; Anderson EH; Attwood DT; Vinogradov AV; Artioukov IA; Pershyn YP; Kondratenko VV
    Opt Lett; 2005 Aug; 30(16):2095-7. PubMed ID: 16127921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-photon imaging using adaptive phase compensated ultrashort laser pulses.
    Xi P; Andegeko Y; Pestov D; Lovozoy VV; Dantus M
    J Biomed Opt; 2009; 14(1):014002. PubMed ID: 19256690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digital confocal microscope.
    Goy AS; Psaltis D
    Opt Express; 2012 Sep; 20(20):22720-7. PubMed ID: 23037422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confocal theta line-scanning microscope for imaging human tissues.
    Dwyer PJ; DiMarzio CA; Rajadhyaksha M
    Appl Opt; 2007 Apr; 46(10):1843-51. PubMed ID: 17356629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-field swept-source phase microscopy.
    Sarunic MV; Weinberg S; Izatt JA
    Opt Lett; 2006 May; 31(10):1462-4. PubMed ID: 16642139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scanning holographic microscopy with transverse resolution exceeding the Rayleigh limit and extended depth of focus.
    Indebetouw G; El Maghnouji A; Foster R
    J Opt Soc Am A Opt Image Sci Vis; 2005 May; 22(5):892-8. PubMed ID: 15898548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel x-ray multispectral imaging of ultraintense laser plasmas by a single-photon charge coupled device based pinhole camera.
    Labate L; Giulietti A; Giulietti D; Köster P; Levato T; Gizzi LA; Zamponi F; Lübcke A; Kämpfer T; Uschmann I; Förster E
    Rev Sci Instrum; 2007 Oct; 78(10):103506. PubMed ID: 17979418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optics at the nanometre scale.
    Pohl DW
    Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):701-17. PubMed ID: 15306489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scattering suppression and confocal detection in multifocal multiphoton microscopy.
    Martini J; Andresen V; Anselmetti D
    J Biomed Opt; 2007; 12(3):034010. PubMed ID: 17614718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guiding a confocal microscope by single fluorescent nanoparticles.
    Cang H; Xu CS; Montiel D; Yang H
    Opt Lett; 2007 Sep; 32(18):2729-31. PubMed ID: 17873950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperspectral confocal microscope.
    Sinclair MB; Haaland DM; Timlin JA; Jones HD
    Appl Opt; 2006 Aug; 45(24):6283-91. PubMed ID: 16892134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-cost, scalable laser scanning module for real-time reflectance and fluorescence confocal microscopy.
    Chou DR; Bower BA; Wax A
    Appl Opt; 2005 Apr; 44(11):2013-8. PubMed ID: 15835349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended Field Laser Confocal Microscopy (EFLCM): combining automated Gigapixel image capture with in silico virtual microscopy.
    Flaberg E; Sabelström P; Strandh C; Szekely L
    BMC Med Imaging; 2008 Jul; 8():13. PubMed ID: 18627634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved scanning laser fundus imaging using polarimetry.
    Bueno JM; Hunter JJ; Cookson CJ; Kisilak ML; Campbell MC
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1337-48. PubMed ID: 17429479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated extended volume imaging of tissue using confocal and optical microscopy.
    Sands GB; Gerneke DA; Smaill BH; Le Grice IJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():133-6. PubMed ID: 17946383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm.
    Srinivasan VJ; Huber R; Gorczynska I; Fujimoto JG; Jiang JY; Reisen P; Cable AE
    Opt Lett; 2007 Feb; 32(4):361-3. PubMed ID: 17356653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective suppression of two-photon fluorescence in laser scanning microscopy by ultrafast pulse-train excitation.
    De AK; Roy D; Goswami D
    J Biomed Opt; 2010; 15(6):060502. PubMed ID: 21198143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing image quality in a scanning laser ophthalmoscope with differing pinholes and induced scattered light.
    Hunter JJ; Cookson CJ; Kisilak ML; Bueno JM; Campbell MC
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1284-95. PubMed ID: 17429474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors.
    Chen DC; Jones SM; Silva DA; Olivier SS
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1305-12. PubMed ID: 17429476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection.
    Nugent-Glandorf L; Perkins TT
    Opt Lett; 2004 Nov; 29(22):2611-3. PubMed ID: 15552661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.