These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 16128051)

  • 41. Spectrochemical analysis of powder using 355 nm Nd-YAG laser-induced low-pressure plasma.
    Lie ZS; Pardede M; Hedwig R; Suliyanti MM; Kurniawan KH; Munadi ; Lee YI; Kagawa K; Hattori I; Tjia MO
    Anal Bioanal Chem; 2008 Apr; 390(7):1781-7. PubMed ID: 18305928
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Long-Lived Electronic Coherence of Iodine in the Condensed Phase: Sharp Zero-Phonon Lines in the B↔X Absorption and Emission of I2 in Solid Xe.
    Hulkko E; Lindgren J; Kiljunen T; Pettersson M
    J Phys Chem Lett; 2012 Jul; 3(13):1847-52. PubMed ID: 26291871
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Frequency stabilization of a 1319-nm Nd:YAG laser by saturation spectroscopy of molecular iodine.
    Guo R; Hong FL; Onae A; Bi ZY; Matsumoto H; Nakagawa K
    Opt Lett; 2004 Aug; 29(15):1733-5. PubMed ID: 15352353
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Iodine stabilized laser with three internal mirrors.
    Cole JB; Bruce CF
    Appl Opt; 1975 Jun; 14(6):1303-10. PubMed ID: 20154821
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Iodine stabilization of a diode laser in the optical communication band.
    Chui HC; Shaw SY; Ko MS; Liu YW; Shy JT; Lin T; Cheng WY; Roussev RV; Fejer MM
    Opt Lett; 2005 Mar; 30(6):646-8. PubMed ID: 15792004
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Frequency stabilization of an external cavity diode laser to molecular iodine at 657.483 nm.
    Fang HM; Wang SC; Shy JT
    Appl Opt; 2006 May; 45(13):3173-6. PubMed ID: 16639468
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-illuminated third-harmonic image upconversion.
    Torregrosa AJ; Rico ML; Capmany J
    Opt Lett; 2024 Jun; 49(12):3436-3439. PubMed ID: 38875639
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Laser frequency stabilization by modulation transfer spectroscopy and balanced detection of molecular iodine for laser cooling of
    de Melo ÁMG; Letellier H; Apoorva A; Glicenstein A; Kaiser R
    Opt Express; 2024 Feb; 32(4):6204-6214. PubMed ID: 38439329
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Liquid chromatography detection at the second harmonic of the modulated thermal lens.
    Pang TK; Morris MD
    Anal Chem; 1984 Jul; 56(8):1467-9. PubMed ID: 6465516
    [No Abstract]   [Full Text] [Related]  

  • 50. Hyperfine structure and absolute frequency of the (87)Rb 5P(3/2) state.
    Ye J; Swartz S; Jungner P; Hall JL
    Opt Lett; 1996 Aug; 21(16):1280-2. PubMed ID: 19876325
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Iodine Absorption Cells Purity Testing.
    Hrabina J; Zucco M; Philippe C; Pham TM; Holá M; Acef O; Lazar J; Číp O
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28067834
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extension of absolute-frequency measurements to the visible: frequencies of ten hyperfine components of iodine.
    Baird KM; Evenson KM; Hanes GR; Jennings DA; Petersen FR
    Opt Lett; 1979 Sep; 4(9):263-4. PubMed ID: 19687870
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stark effect observed in molecular iodine and its application to laser-frequency stabilization.
    Uehara K
    Opt Lett; 1981 Apr; 6(4):191-2. PubMed ID: 19701372
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Numerical simulation of the magnetically gain-switched chemical oxygen-iodine laser.
    Liu H; Wu K; Wang L; Zhang Y; Fang B; Li Q; Jin Y
    Heliyon; 2022 Sep; 8(9):e10530. PubMed ID: 36132177
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Artificial neural networks for laser frequency stabilization.
    Winkler L; Nölleke C
    Opt Express; 2023 Sep; 31(20):32188-32199. PubMed ID: 37859027
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improved hyperfine measurements of the Na 5p excited state through frequency-controlled Dopplerless spectroscopy in a Zeeman magneto-optic laser trap.
    Zhu M; Oates CW; Hall JL
    Opt Lett; 1993 Jul; 18(14):1186. PubMed ID: 19823329
    [No Abstract]   [Full Text] [Related]  

  • 57. Improved hyperfine measurements of the Na 5p excited state through frequency-controlled Dopplerless spectroscopy in a Zeeman magneto-optic laser trap: erratum.
    Zlu M; Oates CW; Hall JL
    Opt Lett; 1993 Oct; 18(19):1681. PubMed ID: 19823485
    [No Abstract]   [Full Text] [Related]  

  • 58. Strong hyperfine induced quenching of a metastable state in Xe+ observed by hyperfine selective laser probing of a stored ion beam.
    Mannervik S; Broström L; Lidberg J; Norlin LO; Royen P
    Phys Rev Lett; 1996 May; 76(20):3675-3678. PubMed ID: 10061081
    [No Abstract]   [Full Text] [Related]  

  • 59. Laser transition at 651-6 nm in ionized iodine.
    Willet CS; Heavens OS
    Opt Acta (Lond); 1966 Jul; 13(3):271-4. PubMed ID: 5968791
    [No Abstract]   [Full Text] [Related]  

  • 60. Hyperfine structure of some excited states of 133Cs+ by collinear laser-ion beam spectroscopy.
    Sen A; Childs WJ
    Phys Rev A Gen Phys; 1989 Aug; 40(4):2159-2162. PubMed ID: 9902376
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.