BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 16128590)

  • 1. G Protein betagamma dimer formation: Gbeta and Ggamma differentially determine efficiency of in vitro dimer formation.
    Dingus J; Wells CA; Campbell L; Cleator JH; Robinson K; Hildebrandt JD
    Biochemistry; 2005 Sep; 44(35):11882-90. PubMed ID: 16128590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gbeta3 forms distinct dimers with specific Ggamma subunits and preferentially activates the beta3 isoform of phospholipase C.
    Poon LS; Chan AS; Wong YH
    Cell Signal; 2009 May; 21(5):737-44. PubMed ID: 19168127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The phosducin-like protein PhLP1 is essential for G{beta}{gamma} dimer formation in Dictyostelium discoideum.
    Knol JC; Engel R; Blaauw M; Visser AJ; van Haastert PJ
    Mol Cell Biol; 2005 Sep; 25(18):8393-400. PubMed ID: 16135826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of molecular chaperones in G protein beta5/regulator of G protein signaling dimer assembly and G protein betagamma dimer specificity.
    Howlett AC; Gray AJ; Hunter JM; Willardson BM
    J Biol Chem; 2009 Jun; 284(24):16386-16399. PubMed ID: 19376773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of differential stability of G protein βγ dimers containing the γ11 subunit on functional activity at the M1 muscarinic receptor, A1 adenosine receptor, and phospholipase C-β.
    McIntire WE; MacCleery G; Murphree LJ; Kerchner KR; Linden J; Garrison JC
    Biochemistry; 2006 Sep; 45(38):11616-31. PubMed ID: 16981721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regions in the G protein gamma subunit important for interaction with receptors and effectors.
    Myung CS; Lim WK; DeFilippo JM; Yasuda H; Neubig RR; Garrison JC
    Mol Pharmacol; 2006 Mar; 69(3):877-87. PubMed ID: 16319284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the chaperonin CCT/TRiC complex in G protein betagamma-dimer assembly.
    Wells CA; Dingus J; Hildebrandt JD
    J Biol Chem; 2006 Jul; 281(29):20221-32. PubMed ID: 16702223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Multiple-Reaction Monitoring Proteomic Analysis of Gβ and Gγ Subunits in C57Bl6/J Brain Synaptosomes.
    Yim YY; McDonald WH; Hyde K; Cruz-Rodríguez O; Tesmer JJG; Hamm HE
    Biochemistry; 2017 Oct; 56(40):5405-5416. PubMed ID: 28880079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ric-8 enhances G protein betagamma-dependent signaling in response to betagamma-binding peptides in intact cells.
    Malik S; Ghosh M; Bonacci TM; Tall GG; Smrcka AV
    Mol Pharmacol; 2005 Jul; 68(1):129-36. PubMed ID: 15802611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaperone-mediated assembly of G protein complexes.
    Willardson BM; Tracy CM
    Subcell Biochem; 2012; 63():131-53. PubMed ID: 23161137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular trafficking and assembly of specific Kir3 channel/G protein complexes.
    Robitaille M; Ramakrishnan N; Baragli A; Hébert TE
    Cell Signal; 2009 Apr; 21(4):488-501. PubMed ID: 19135528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic analysis of G protein gamma subunits in human and mouse - the relationship between conserved gene structure and G protein betagamma dimer formation.
    Yang W; Hildebrandt JD
    Cell Signal; 2006 Feb; 18(2):194-201. PubMed ID: 16006100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. G protein betagamma dimer expression in cardiomyocytes: developmental acquisition of Gbeta3.
    Rybin VO; Steinberg SF
    Biochem Biophys Res Commun; 2008 Apr; 368(2):408-13. PubMed ID: 18242165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of association between activated Galpha q and Gbetagamma disrupts receptor-dependent and receptor-independent signaling.
    Evanko DS; Thiyagarajan MM; Takida S; Wedegaertner PB
    Cell Signal; 2005 Oct; 17(10):1218-28. PubMed ID: 16038796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenylyl cyclase type-VIII activity is regulated by G(betagamma) subunits.
    Steiner D; Saya D; Schallmach E; Simonds WF; Vogel Z
    Cell Signal; 2006 Jan; 18(1):62-8. PubMed ID: 15925485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of G-protein betagamma expression in inner ear.
    Barritt LC; Fritzsch B; Beisel KW
    Brain Res Mol Brain Res; 1999 May; 68(1-2):42-54. PubMed ID: 10320782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of G protein betagamma dimer formation in live cells using multicolor bimolecular fluorescence complementation demonstrates preferences of beta1 for particular gamma subunits.
    Mervine SM; Yost EA; Sabo JL; Hynes TR; Berlot CH
    Mol Pharmacol; 2006 Jul; 70(1):194-205. PubMed ID: 16641313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of G protein beta subunit with inward rectifier K(+) channel Kir3.
    Zhao Q; Kawano T; Nakata H; Nakajima Y; Nakajima S; Kozasa T
    Mol Pharmacol; 2003 Nov; 64(5):1085-91. PubMed ID: 14573757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissection of the steps of phospholipase C beta 2 activity that are enhanced by G beta gamma subunits.
    Feng J; Roberts MF; Drin G; Scarlata S
    Biochemistry; 2005 Feb; 44(7):2577-84. PubMed ID: 15709770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rapid activation of N-Ras by alpha-thrombin in fibroblasts is mediated by the specific G-protein Galphai2-Gbeta1-Ggamma5 and occurs in lipid rafts.
    Lents NH; Irintcheva V; Goel R; Wheeler LW; Baldassare JJ
    Cell Signal; 2009 Jun; 21(6):1007-14. PubMed ID: 19250965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.