These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 16128804)
1. The light-harvesting antenna of the diatom Phaeodactylum tricornutum. Evidence for a diadinoxanthin-binding subcomplex. Guglielmi G; Lavaud J; Rousseau B; Etienne AL; Houmard J; Ruban AV FEBS J; 2005 Sep; 272(17):4339-48. PubMed ID: 16128804 [TBL] [Abstract][Full Text] [Related]
2. Spectroscopic and molecular characterization of the oligomeric antenna of the diatom Phaeodactylum tricornutum. Lepetit B; Volke D; Szabó M; Hoffmann R; Garab G; Wilhelm C; Goss R Biochemistry; 2007 Aug; 46(34):9813-22. PubMed ID: 17672483 [TBL] [Abstract][Full Text] [Related]
3. Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. Beer A; Gundermann K; Beckmann J; Büchel C Biochemistry; 2006 Oct; 45(43):13046-53. PubMed ID: 17059221 [TBL] [Abstract][Full Text] [Related]
4. Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Büchel C Biochemistry; 2003 Nov; 42(44):13027-34. PubMed ID: 14596618 [TBL] [Abstract][Full Text] [Related]
5. Enrichment of the light-harvesting complex in diadinoxanthin and implications for the nonphotochemical fluorescence quenching in diatoms. Lavaud J; Rousseau B; Etienne AL Biochemistry; 2003 May; 42(19):5802-8. PubMed ID: 12741838 [TBL] [Abstract][Full Text] [Related]
6. The diadinoxanthin diatoxanthin cycle induces structural rearrangements of the isolated FCP antenna complexes of the pennate diatom Phaeodactylum tricornutum. Schaller-Laudel S; Volke D; Redlich M; Kansy M; Hoffmann R; Wilhelm C; Goss R Plant Physiol Biochem; 2015 Nov; 96():364-76. PubMed ID: 26368016 [TBL] [Abstract][Full Text] [Related]
7. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum. Giovagnetti V; Ruban AV Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):218-230. PubMed ID: 27989819 [TBL] [Abstract][Full Text] [Related]
8. The monomeric photosystem I-complex of the diatom Phaeodactylum tricornutum binds specific fucoxanthin chlorophyll proteins (FCPs) as light-harvesting complexes. Veith T; Büchel C Biochim Biophys Acta; 2007 Dec; 1767(12):1428-35. PubMed ID: 18028870 [TBL] [Abstract][Full Text] [Related]
9. Association of fucoxanthin chlorophyll a/c-binding polypeptides with photosystems and phosphorylation in the centric diatom Cyclotella cryptica. Brakemann T; Schlörmann W; Marquardt J; Nolte M; Rhiel E Protist; 2006 Oct; 157(4):463-75. PubMed ID: 16904939 [TBL] [Abstract][Full Text] [Related]
10. Oligomerization and pigmentation dependent excitation energy transfer in fucoxanthin-chlorophyll proteins. Gildenhoff N; Amarie S; Gundermann K; Beer A; Büchel C; Wachtveitl J Biochim Biophys Acta; 2010 May; 1797(5):543-9. PubMed ID: 20117075 [TBL] [Abstract][Full Text] [Related]
11. A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana. Grouneva I; Jakob T; Wilhelm C; Goss R Plant Cell Physiol; 2008 Aug; 49(8):1217-25. PubMed ID: 18587148 [TBL] [Abstract][Full Text] [Related]
12. Cadmium inhibits epoxidation of diatoxanthin to diadinoxanthin in the xanthophyll cycle of the marine diatom Phaeodactylum tricornutum. Bertrand M; Schoefs B; Siffel P; Rohacek K; Molnar I FEBS Lett; 2001 Nov; 508(1):153-6. PubMed ID: 11707287 [TBL] [Abstract][Full Text] [Related]
13. Role of carotenoids in light-harvesting processes in an antenna protein from the chromophyte Xanthonema debile. Durchan M; Tichý J; Litvín R; Šlouf V; Gardian Z; Hříbek P; Vácha F; Polívka T J Phys Chem B; 2012 Aug; 116(30):8880-9. PubMed ID: 22764831 [TBL] [Abstract][Full Text] [Related]
14. Evidence for the existence of one antenna-associated, lipid-dissolved and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. Lepetit B; Volke D; Gilbert M; Wilhelm C; Goss R Plant Physiol; 2010 Dec; 154(4):1905-20. PubMed ID: 20935178 [TBL] [Abstract][Full Text] [Related]
15. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Lavaud J; Rousseau B; van Gorkom HJ; Etienne AL Plant Physiol; 2002 Jul; 129(3):1398-406. PubMed ID: 12114593 [TBL] [Abstract][Full Text] [Related]
16. Functional architecture of the major light-harvesting complex from higher plants. Formaggio E; Cinque G; Bassi R J Mol Biol; 2001 Dec; 314(5):1157-66. PubMed ID: 11743731 [TBL] [Abstract][Full Text] [Related]
17. Carotenoid structures and environments in trimeric and oligomeric fucoxanthin chlorophyll a/c2 proteins from resonance Raman spectroscopy. Premvardhan L; Bordes L; Beer A; Büchel C; Robert B J Phys Chem B; 2009 Sep; 113(37):12565-74. PubMed ID: 19697894 [TBL] [Abstract][Full Text] [Related]
18. Utilization of light by fucoxanthin-chlorophyll-binding protein in a marine centric diatom, Chaetoceros gracilis. Ishihara T; Ifuku K; Yamashita E; Fukunaga Y; Nishino Y; Miyazawa A; Kashino Y; Inoue-Kashino N Photosynth Res; 2015 Dec; 126(2-3):437-47. PubMed ID: 26149177 [TBL] [Abstract][Full Text] [Related]
19. Molecular events accompanying aggregation-induced energy quenching in fucoxanthin-chlorophyll proteins. Alexandre MTA; Krüger TPJ; Pascal AA; Veremeienko V; Llansola-Portoles MJ; Gundermann K; van Grondelle R; Büchel C; Robert B Biochim Biophys Acta Bioenerg; 2024 Nov; 1865(4):149500. PubMed ID: 39074571 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a trimeric light-harvesting complex in the diatom Phaeodactylum tricornutum built of FcpA and FcpE proteins. Joshi-Deo J; Schmidt M; Gruber A; Weisheit W; Mittag M; Kroth PG; Büchel C J Exp Bot; 2010 Jun; 61(11):3079-87. PubMed ID: 20478968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]