These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 16129444)

  • 1. Differences in muscle function during walking and running at the same speed.
    Sasaki K; Neptune RR
    J Biomech; 2006; 39(11):2005-13. PubMed ID: 16129444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle force redistributes segmental power for body progression during walking.
    Neptune RR; Zajac FE; Kautz SA
    Gait Posture; 2004 Apr; 19(2):194-205. PubMed ID: 15013508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle mechanical work and elastic energy utilization during walking and running near the preferred gait transition speed.
    Sasaki K; Neptune RR
    Gait Posture; 2006 Apr; 23(3):383-90. PubMed ID: 16029949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed.
    Neptune RR; Sasaki K
    J Exp Biol; 2005 Mar; 208(Pt 5):799-808. PubMed ID: 15755878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle compensatory mechanisms during able-bodied toe walking.
    Sasaki K; Neptune RR; Burnfield JM; Mulroy SJ
    Gait Posture; 2008 Apr; 27(3):440-6. PubMed ID: 17624784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of the body centre of mass during actual acceleration across transition speed.
    Segers V; Aerts P; Lenoir M; De Clercq D
    J Exp Biol; 2007 Feb; 210(Pt 4):578-85. PubMed ID: 17267643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscles that support the body also modulate forward progression during walking.
    Liu MQ; Anderson FC; Pandy MG; Delp SL
    J Biomech; 2006; 39(14):2623-30. PubMed ID: 16216251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: II. Muscle energy use as indicated by blood flow.
    Ellerby DJ; Marsh RL
    J Exp Biol; 2006 Jun; 209(Pt 11):2064-75. PubMed ID: 16709909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of adding trunk motion to the interpretation of the role of joint moments during normal walking.
    Patel M; Talaty M; Ounpuu S
    J Biomech; 2007; 40(16):3563-9. PubMed ID: 17765906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changing the demand on specific muscle groups affects the walk-run transition speed.
    Bartlett JL; Kram R
    J Exp Biol; 2008 Apr; 211(Pt 8):1281-8. PubMed ID: 18375853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor patterns in human walking and running.
    Cappellini G; Ivanenko YP; Poppele RE; Lacquaniti F
    J Neurophysiol; 2006 Jun; 95(6):3426-37. PubMed ID: 16554517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimates of mechanical work and energy transfers: demonstration of a rigid body power model of the recovery leg in gait.
    Caldwell GE; Forrester LW
    Med Sci Sports Exerc; 1992 Dec; 24(12):1396-412. PubMed ID: 1470024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical characterization and clinical implications of artificially induced toe-walking: differences between pure soleus, pure gastrocnemius and combination of soleus and gastrocnemius contractures.
    Matjacić Z; Olensek A; Bajd T
    J Biomech; 2006; 39(2):255-66. PubMed ID: 16321627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle mechanical advantage of human walking and running: implications for energy cost.
    Biewener AA; Farley CT; Roberts TJ; Temaner M
    J Appl Physiol (1985); 2004 Dec; 97(6):2266-74. PubMed ID: 15258124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking.
    Neptune RR; Kautz SA; Zajac FE
    J Biomech; 2001 Nov; 34(11):1387-98. PubMed ID: 11672713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of pedaling rate on muscle mechanical energy in low power recumbent pedaling using forward dynamic simulations.
    Hakansson NA; Hull ML
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):509-16. PubMed ID: 18198708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: I. Organismal metabolism and biomechanics.
    Marsh RL; Ellerby DJ; Henry HT; Rubenson J
    J Exp Biol; 2006 Jun; 209(Pt 11):2050-63. PubMed ID: 16709908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adjusting muscle function to demand: joint work during acceleration in wild turkeys.
    Roberts TJ; Scales JA
    J Exp Biol; 2004 Nov; 207(Pt 23):4165-74. PubMed ID: 15498962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle coordination of mediolateral balance in normal walking.
    Pandy MG; Lin YC; Kim HJ
    J Biomech; 2010 Aug; 43(11):2055-64. PubMed ID: 20451911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical and physiological aspects of legged locomotion in humans.
    Saibene F; Minetti AE
    Eur J Appl Physiol; 2003 Jan; 88(4-5):297-316. PubMed ID: 12527959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.